## Chemistry 12 <br> Equilibrium Review Package

Name: Key
Date:
Block:

## I. Multiple Choice:

1. Consider the rate diagram below for the following reaction:

$$
2 \mathrm{H}^{\prime}(\mathrm{g}) \leftrightharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$



Which of the following occurs at time $t_{1}$ ?
A. addition of $\mathrm{H}_{2}$
C. addition of a catalyst
B. Gddition of HI
D. a decrease in volume
2. Chemical equilibrium is said to be dynamic because:
A. the reaction proceeds quickly. $\rightarrow$ always in motion
B. the mass of the reactants is decreasing.
C. the macroscopic properties are constant.
D. both forward and reverse reactions are occurring.
3. Which reaction characteristics are changed by the addition of a catalyst to a reaction at constant temperature?
I. Activation energy
W. Equilibrium concentrations

IF. Reaction enthalpy


```
Uncatalyeed
catalyeed
```

A. I only
B. III only
C. I and II only
D. I, II and III
4. Given the following system:

$$
\left.2 \mathrm{Crb}_{4}^{2-}(\mathrm{aq})+2 \uparrow_{H^{4}} \mathrm{aq}\right) \leftrightharpoons \mathrm{Cr}_{2} \hat{\mathrm{O}}_{7}^{2-}(\mathrm{aq})+\uparrow_{2} \mathrm{O}_{(1)}
$$

Which of the following chemicals, when added to the above system at equilibrium, would result in a decrease in $\left[\mathrm{CrO}_{4}^{-2}\right]$ ?
A. NaOH
C. $\mathrm{Xa}_{2} \mathrm{CrO}_{4}$
B. $\mathrm{HNO}_{3}$
D. $\underset{\substack{\mathrm{NaCl}_{2} \mathrm{Cr}_{2} \mathrm{O} \\ \text { spec }}}{ }$
5. Addition of a catalyst to an equilibrium system:
A. increases the value of $\mathrm{K}_{\text {ea }}$
B. increases the yield of products.
C. has no effect on the rates of reaction.
D. increases the rate of formation of both reactants and product
6. Consider the following reaction:

$$
2 \mathrm{~B}) /\left(\mathrm{sl}+3 \mathrm{~F}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{BF}_{3}(\mathrm{~g})\right.
$$

The equilibrium expression is:
A. $\mathrm{K}_{e q}=\frac{\left[2 \mathrm{BF}_{3}\right]}{\left[3 \mathrm{~F}_{2}\right]}$
B. $\mathrm{K}_{e q}=\frac{\left[\mathrm{F}_{2}\right]^{3}}{\left[\mathrm{BF}_{3}\right]^{2}}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{BF}_{3}\right]^{2}}{\left[\mathrm{~F}_{2}\right]^{3}}$
D. $\mathrm{K}_{e q}=\frac{\left[\mathrm{BF}_{3}\right]^{2}}{[\mathrm{~B}]^{2}\left[\mathrm{~F}_{2}\right]^{3}}$
7. The value of $K_{\text {ea }}$ can be changed only by:
A. adding a catalyst.

8. Consider the following equilibrium:

$$
\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{PCl}_{5(\mathrm{~g})}
$$

When 0.40 mol of $\mathrm{PCl}_{3}$ and 0.40 mol of $\mathrm{Cl}_{2}$ are placed in a 1.00 L container and allowed to reach equilibrium, $0.244 \mathrm{~mol}^{2} \mathrm{PCl}_{5}$ are present. From this information, the value of $\mathrm{K}_{\text {eq }}$ is
A. 0.10
B. 0.30
C. 3.3
(D. 10
9. Consider the following equilibrium:
$\begin{aligned} \mathrm{Keq}_{\text {e }} & =\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]} \\ & =\frac{0.244 \mathrm{M}}{(0.156 \mathrm{M})^{2}}\end{aligned}$

$$
\begin{aligned}
& \text { brium: } \\
& \mathrm{PCl}_{5(\mathrm{~g})} \leftrightharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \quad \mathrm{Keq}=2.30
\end{aligned}
$$

 the:
A. Deft because Trial $K_{e q}>K_{\text {eq }}$

$$
\text { Trial keq }=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{(1.0 \mathrm{~m})(1.0 \mathrm{M})}{(0.05 \mathrm{~m})}
$$

B. left because Trial $K_{\text {eq }}<K_{\text {eq }}$ C. right because Trial $K_{\text {eq }}>K_{\text {eq }}$
D. right because Trial $K_{\text {eq }}<K_{\text {eq }}$

$$
=\underset{\text { Trial }}{20}>\underset{\text { kea }}{2.30}
$$

10. A sample of $X_{(g)}$ is placed in a vessel and brought to equilibrium according to the reaction:

$$
X(g) \leftrightharpoons Y(g)+h g(a t
$$

When the temperature is decreased, the concentration of $\mathcal{Y}$ in the reaction vessel increases.
Which of the following could explain this observation?
A. The molecules are colliding with less energy, setherearionshifts to the right.
B. The reaction is en karmic, so when the temperature is decreased, the reaction shifts to

D. When the temperature is decreased, the value of Trial Kealso decreases, so the reaction shifts to the right.
11. Consider the following equilibrium:

then
$\rightleftarrows$

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NO}_{\left(\mathrm{g}_{-}\right.}
$$

Nitrogen gas and oxygen gas react when placed in a closed container. As the reaction proceeds towards equilibrium, the rate of the reverse reaction:
A. increases as the [ ] of products decreases.
B. decreases as the [ ] of products decreases.
C. Increases as the [] of products increases.
D. decreases as the [ ] of products increases.
12. Consider the following equilibrium:

For the above reaction:

$$
\underset{2}{2 \mathrm{NO}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})}+59 \mathrm{~kJ}
$$

$$
\Omega \downarrow
$$

A. both min. enthalpy and max. entropy favour products.
B. both min. enthalpy and max. entropy favour reactants.
C. min. enthalpy favours reactants and max. entropy favours products.
D. min. enthalpy favours products and max. entropy favours reactants.
13. Consider the following equilibrium:

$$
\leftrightarrows(g) \leftrightharpoons H^{2}(g)+1(b)
$$

At constant temperature and volume, more $I_{2}$ is added to the above equilibrium. A new state of equilibrium results from a shift to the:
A. left with a net decrease in $\left[\mathrm{H}_{2}\right]$.
C. right with a net increase in $\left[\mathrm{H}_{2}\right]$.
B. left with a net increase in $\left[\mathrm{H}_{2}\right]$.
D. right with a net decrease in $\left[\mathrm{H}_{2}\right]$.
14. Consider the following equilibrium:

$$
2 N \mathrm{O}\left(\mathrm{c}_{(\mathrm{g})} \leftrightharpoons 2 \mathrm{NP}(\mathrm{~g})+\mathrm{Cl}_{2(\mathrm{~g})}\right.
$$

In a 1.0 L container at equilibrium there are $1.0 \mathrm{~mol} \mathrm{NOCl}, 0.70 \mathrm{~mol} \mathrm{NO}$ and 0.40 mol Cl . At constant temperature and volume, 0.10 mol NOCl is added. The concentrations in the "new" equilibrium in comparison to the concentrations in the "old" equilibrium are:

15. Consider the following equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2(\mathrm{~g})}
$$

When $0.1010 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ is placed in a 1.000 L container, equilibrium is established. The equilibrium concentration of $\mathrm{O}_{2}$ is 0.0010 M . The equilibrium concentrations of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2}$ are:

|  | $\left[\mathrm{H}_{2} \mathrm{O}\right]$ | $\left[\mathrm{H}_{2}\right]$ |
| :---: | :---: | :---: |
|  | 0.0990 | 0.0020 |
|  | 0.1000 | 0.0010 |
| B. | 0.1005 | 0.0005 |
| C. | 0.1005 |  |
|  | 0.1010 | 0.0020 |


| $2 \mathrm{H}_{2} \mathrm{O}$ | $2 \mathrm{H}_{2}$ | $\mathrm{O}_{2}$ |
| :---: | :---: | :---: |
| 0.1010 M | OM | OM |
| C - 0.0020 M | $+0.0020 \mathrm{~m}$ | $+0.0010 \mathrm{~m}$ |
| E 0.099 M | 0.0020 m | 0.0010 M |

16. Consider the following equilibrium: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$

The ratio used to calculate the equilibrium constant is:
A. $\frac{[2 \mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[2 \mathrm{CO}_{2}\right]^{2}}$
Req
B. $\frac{\left[2 \mathrm{CO}_{2}\right]^{2}}{[2 \mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}$
C. $\frac{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]^{2}}$
(D.) $\frac{\left[\mathrm{CO}_{2}\right]^{2}}{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}$
$\begin{aligned} & \text { 17. Consider the following equilibrium: } \\ & \qquad \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CH}_{3} \mathrm{OH} \\ & (\mathrm{g})\end{aligned}+91 \downarrow \mathrm{~kJ}$
A change in temperature of the above system increases the value of the equilibrium constant. The new state of equilibrium was established by a shift: (shift right) Keq
A. left as a result of a decrease in temperature.
B. Dight as a result of a decrease in temperature.
C. left as a result of an increase in temperature.
D. right as a result of an increase in temperature.
18. Consider the following equilibrium:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S} /(\mathrm{s}) \leftrightharpoons \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \quad \mathrm{Keq}_{\text {eq }}=\frac{(1.0 \mathrm{M})}{(0.050 \mathrm{M})}
$$

In a 1.0 L container at equilibrium there are $0.050 \mathrm{~mol} \mathrm{H}_{2}, 0.050 \mathrm{~mol} \mathrm{~S}$ and 1.0 mol H H . The value of Kea is:
A. $2.5 \times 10^{-3}$
B. $5.0 \times 10^{-2}$
C. $2.0 \times 10^{1}$
D. $4.0 \times 10^{2}$
19. Consider the following equilibrium:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}(\mathrm{~g}) \leftrightharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

At high temperature, $\mathrm{H}_{2} \mathrm{O}$ and CO are placed in a closed container. As the system approaches equilibrium, the:
A. rate of the forward and reverse reactions both increase.
B. rate of the forward and reverse reactions both decrease.
C. rate of the forward reaction decreases and the rate of the reverse reaction increases.
D. rate of the forward reaction increases and the rate of the reverse reaction decreases.
20. Consider the following equilibrium:

$\underset{1}{\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})}+58 \mathrm{~kJ} \leftrightharpoons \underset{2}{2 \mathrm{NO}_{2}(\mathrm{~g})}$
A. $\mathrm{NO}_{2}$ is added. C. the temperature is decreased.
B. $\mathrm{N}_{2} \mathrm{O}_{4}$ is removed.
D. the volume of the system is increased.

Pressure $\downarrow$
4 shifts to side w/ more particles
21. In an endothermic equfirifyum system, the: $\stackrel{\rightharpoonup}{\rightleftarrows}$
A. minimum enthalpy and the maximum entropy both favour products.
B. minimum enthalpy and the maximum entropy both favour reactants.
C. minimum enthalpy favours products and the maximum entropy favours reactants.
D. minimum enthalpy favours reactants and the maximum entropy favours products.
22. An equilibrium system shifts left when the temperature is increased. The forward reaction is
A. exothermic and $\Delta H$ is positive.
C. endothermic and $\Delta \mathrm{H}$ is positive.
B. exothermic and $\Delta H$ is negative.
D. endothermic and $\Delta \mathrm{H}$ is negative.
23. Given the following equilibrium system:

$$
\mathrm{Br}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{Br}^{\prime} \text { (III) }
$$



The equilibrium constant expression for the above system is:
A. $\mathrm{K}_{e q}=\frac{\left\lfloor\mathrm{Br}_{2(1)}\right\rfloor}{\left[\mathrm{Br}_{2(\mathrm{~g})}\right]}$
B. $\mathrm{K}_{e q}=\left[\mathrm{Br}_{2(g)}\right]$
(C.) $\mathrm{K}_{e q}=\frac{1}{\left[\operatorname{Br}_{2(\mathrm{~g})}\right]}$
D. $K_{e q}=\left[\operatorname{Br}_{2(\mathrm{~g})}\right]\left[\mathrm{Br}_{2(\mathrm{~g})}\right]$
24. Consider the following equilibrium:

$$
\text { heft }+\mathrm{PCl}_{5(\mathrm{~g})} \leftrightharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \Delta \mathrm{H}=+92.5 \mathrm{~kJ}
$$

When the temperature decreases, the equilibrium:
A. shifts left and $K_{\text {eq }}$ value increases.
C. shifts right and Kea value increases.
B.) shifts left and Kea value decreases.
D. shifts right and Kea value decreases.
25. Consider the following equilibrium: $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\text {eq }}=5.7$ At equilibrium, the $\left[\mathrm{CH}_{4}\right]=0.40 \mathrm{M},[\mathrm{CO}]=0.30 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.80 \mathrm{M}$. The $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ is:
A. 0.067 M
B. 0.11 M
C. 2.2 M
D. 5.3 M
$5.7=$
$\frac{(0.30 \mathrm{~m})(0.80 \mathrm{~m})^{3}}{(0.40)(x)}$
26. Consider the following equilibrium:

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \leftrightharpoons 3 \mathrm{O}_{2(\mathrm{~g})} \quad \mathrm{K}_{\text {eq }}=55
$$

If 0.060 mol of $\mathrm{O}_{3}$ and 0.70 mol of $\mathrm{O}_{2}$ are introduced into a 1.0 L vessel, the
A. Trial $\mathrm{K}_{\text {eq }}>\mathrm{K}_{\text {eq }}$ and the $\left[\mathrm{O}_{2}\right]$ increases.
$2.28 x=0.1536$ $x=0.067 \mathrm{~m}$

B Trial $\mathrm{Keq}_{\text {eq }}<\mathrm{Keq}$ and the $\left[\mathrm{O}_{2}\right]$ increases.
C. Trial $\mathrm{K}_{\text {eq }}>\mathrm{K}$ eq and the $\left[\mathrm{O}_{2}\right.$ ] decreases.
D. Trial $\mathrm{K}_{\mathrm{eq}}<\mathrm{K}_{\mathrm{eq}}$ and the $\left[\mathrm{O}_{2}\right]$ decreases.

$$
\text { Trial } \mathrm{keq}=\frac{(0.060 \mathrm{~m})^{3}}{(0.70)^{2}}
$$

$=95>\mathrm{Keq}$
27. Macroscopic properties become constant in an equilibrium system when:
A. all reactions have stopped.
B. the reactants are completely used up.
C. maximum enthalpy has been reached.
D. forward and reverse reaction rates are equal.
28. In which of the following systems would the tendencies toward minimum enthalpy and maximum entropy be in opposition to each other?

```
                    \(\max\) etrofy
midect
\(=\mathrm{Br}_{2}(\mathrm{~g})\) \(\int \min\) eithalpy favours reactarts
B. \(\mathrm{NaOH}_{(\mathrm{s})} \leftrightharpoons \mathrm{Na}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})+\) heat
C. \(2 \mathrm{C}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}\) is positive
D. \(2 \mathrm{~K}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons 2 \mathrm{~K}+(\mathrm{aq})+2 \mathrm{OH}-{ }_{(\mathrm{aq})}+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}\) is negative
```


## exo

29. An uncatalyzed reaction was found to produce 40 J of energy in 10 minutes. When catalyzed, the same reaction produced 40 kJ of energy in 2 minutes. Which one of the following potential energy diagrams is consistent with the above data?

c.

B.

D.

30. Consider the following equilibrium system: 1

$$
\mathrm{FeO}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{Fe}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Which one of the following statements describes the effect that a decrease in volume would have on the position of equilibrium and the $\left[\mathrm{H}_{2}\right]$ in the above system?
A. No shift, $\left[\mathrm{H}_{2}\right]$ increases.
[All] $\uparrow$
No shift
C. Shift right, $\left[\mathrm{H}_{2}\right]$ decreases.
B. Shift right, $\left[\mathrm{H}_{2}\right]$ increases.
D. No shift, $\left[\mathrm{H}_{2}\right]$ remains constant.
31. Tooth enamel, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ establishes the following equilibrium:

$$
\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}_{(s)} \leftrightharpoons 5 \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+3 \mathrm{PO}_{4}^{3-(\mathrm{aq})}+\mathrm{OH}^{-(\mathrm{aq})}
$$

Which one of the following, when added to the above equilibrium system, would result in a shift to the right?
A. $\mathrm{H}^{+}$(aq)
B. $\mathrm{OA}^{-1}(\mathrm{aq})$
C. $\mathrm{O}^{\left({ }^{2+}\right.}(\mathrm{aq})$
D. $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}_{\mathrm{K}}$
32. An equal number of moles of $\mathrm{I}_{2(\mathrm{~g})}$ and $\mathrm{Br}_{2(\mathrm{~g})}$ are placed into a closed container and allowed to establish the following equilibrium:

$$
\mathrm{I}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \leftrightharpoons 2 \mid \mathrm{Br}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{eq}}=280
$$

Which one of the following relates $[\mathrm{Br}]$ to $\left[\mathrm{I}_{2}\right]$ at equilibrium?
change is proportional,
conc. are not
A. $\left[I_{2}\right]=[1 \mathrm{Br}]$
B. $\left[\mathrm{I}_{2}\right]<[\mathrm{Br}]$
C. $\left[\mathrm{L}_{2}\right]=2[\mathrm{Br}]$
D. $\left[\mathrm{I}_{2}\right]=280[\mathrm{IBr}]$
$280=\frac{[\text { [PRODUCTS }]}{[\text { reactant }]}$
33. Consider the following equilibrium system:

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NO}_{2(\mathrm{~g})} \quad \mathrm{K}_{\text {eq }}=65
$$

At equilibrium, the $[\mathrm{NO}]=0.600 \mathrm{M}$ and the $\left[\mathrm{O}_{2}\right]=0.300 \mathrm{M}$. Using this data, the $\left[\mathrm{NO}_{2}\right]$ at equilibrium is:
A. 7.0 M
B. 3.4 M
C. 2.6 M
D. 0.60 M

34. Consider the following equilibrium system:

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

1.00 mole of $\mathrm{CO}_{2}$ and 2.00 moles of $\mathrm{H}_{2(\mathrm{~g})}$ are placed into a 2.00 L container. At equilibrium, the [CO] $=0.31 \mathrm{M}$. Based on this data, the equilibrium $\left[\mathrm{CO}_{2}\right]$ is:
A. 0.19 M
B. 0.31 M
C. 0.38 M
D. 0.69 M
35. Consider the following equilibrium:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

How will the forward and reverse equilibrium reaction rates change when additional $\mathrm{H}_{2}$ is added to the system?

|  | Forward Rate | Reverse Rate |
| :---: | :---: | :---: |
| A. | increase | increase |
| B. | increase | decrease |
| C. | decrease | increase |
| D. | no change | no change |


36. Consider the following system at equilibrium:

$$
\mathrm{H}_{2} \mathrm{O} \mathrm{H}_{(\mathrm{g})}+\mathrm{C}(\mathrm{~g}) \leftrightharpoons \mathrm{CO}_{2(\mathrm{~g})}+\hat{H}_{2(\mathrm{~g})}
$$

This equilibrium will shift right as the result of the addition of some extra $\mathrm{H}_{2} \mathrm{O}$. How will this shift affect the concentrations of the other gases?

|  | $[\mathrm{CO}]$ | $\left[\mathrm{CO}_{2}\right]$ | $\left[\mathrm{H}_{2}\right]$ |
| :---: | :---: | :---: | :---: |
| A. | increases | decreases | decreases |
|  | increases | increases | decreases |
| C. | decreases | increases | increases |
| D. | decreases | decreases | increases |

37. Consider the following equilibrium: $\begin{gathered}4 \\ \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}\end{gathered}$

Which of the following factors will not alter the position of equilibrium?
A. a pressure decrease
C. The presence of a catalyst
B. a temperature increase
D. the addition of more $\mathrm{N}_{2(\mathrm{~g})}$
38. Which of the following is least likely to favour the formation of products?
A. $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightharpoons 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
$K_{\text {eq }}=7.3 \times 10^{-18}$
Jmallest
B. $\mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{NO}_{2(\mathrm{~g})} \leftrightharpoons 3 \mathrm{NO}_{(\mathrm{g})}$
C. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$
$K_{\text {eq }}=4.2 \times 10^{-4}$
$K_{\text {eq }}=4.5$
Keq
D. $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{NO}_{(\mathrm{g})}+\mathrm{SO}_{3(\mathrm{~g})}$
$K_{\text {eq }}=85$
39. Consider the following equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { enêrgy } \leftrightharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

Which of the following graphs shows the result of increasing the temperature at time $\dagger_{1}$ ?


B.

C.

D.

40. Consider the following equilibrium and the table of experimental data:


Which of the following represents the Keq value?
A. $4.64 \times 10^{-3}$
B. $3.71 \times 10^{-1}$
C. $7.42 \times 10^{-1}$
D. $2.16 \times 10^{2}$
II. Short Answers:

1. Consider the following equilibrium system:

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NOCl}_{(\mathrm{g})} \quad \mathrm{K}_{\text {eq }}=8.5
$$

A closed flask is found to contain $0.40 \mathrm{M} \mathrm{NO}_{(\mathrm{g})}, 0.32 \mathrm{M} \mathrm{Cl}_{2(\mathrm{~g})}$ and $5.6 \mathrm{M} \mathrm{NOCl}_{(\mathrm{g})}$. Determine the direction the reaction proceeds to reach equilibrium.

$$
\text { Trial Keq }=\frac{(5.6)^{2}}{(0.40)^{2}(0.32)}=\underset{\text { Trial }}{612.5}>8.5
$$

Reaction shifts Left
2. Consider the following equilibrium system:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

The system is said to "shift right" as the result of the addition of extra $\mathrm{H}_{2(\mathrm{~g})}$. Describe the sequence of changes in both forward and reverse reaction rates as the system goes from the original equilibrium to the new equilibrium.

When $\left[\mathrm{H}_{2}\right] \uparrow$, the forward rate $\uparrow$
$L$ this makes [HI] $\uparrow$
4 this makes the reverse rate $\uparrow$
At the newly reestablished equilibrium, the forward \& reverse rate are constant
3. Consider the following equilibrium system:

$$
2 \mathrm{COF}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{CF}_{4(\mathrm{~g})} \quad \mathrm{K}_{\mathrm{eq}}=2.00
$$

A 2.00 L container is filled with 0.500 mol of $\mathrm{COF}_{2}$. Calculate the $\left[\mathrm{COF}_{2}\right]$ at equilibrium.
4. Consider the following equilibrium system:

$$
\text { heft }+\begin{gathered}
\mathrm{Cu}_{(a q)}^{2+} \\
\text { blue }
\end{gathered}+\underset{\text { colourless }}{4 \mathrm{Br}_{(a q)}^{-}} \underset{\text { col en }}{\rightleftarrows} \underset{\text { green }}{\rightleftarrows}
$$

Cooling the equilibrium changes the colour from green to blue. What effect will the decrease in temperature have on Seq? Explain, using Le Chatelier's Principle.

As the endothermic system is cooled, more reactants are being formed. This will decrease Keq

$$
K_{e}=\frac{\text { cpasedest }}{[R \in A C T A N T S}
$$

5. Consider the following:

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightharpoons \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

Initially, $0.0600 \mathrm{~mol} \mathrm{CH}_{4}, 0.0800 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}, 0.280 \mathrm{~mol} \mathrm{CO}$ and $0.740 \mathrm{~mol} \mathrm{H}_{2}$ are placed into a 4.00 L container. At equilibrium, the $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{M}$. What is the value of Keq ?

6. Consider the following equilibrium:
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{HI}{ }_{(\mathrm{g})} \mathrm{Keq}_{\text {eq }}=1.2 \times 10^{-2}$
A 2.0 L flask is filled with 0.10 mol HI . Calculate the concentration of $\mathrm{H}_{2}$ at equilibrium.

7. A flask is initially filled with some HF. At equilibrium, the $[\mathrm{HF}]=0.80 \mathrm{M}$. What is the $\left[\mathrm{H}_{2}\right]$ at equilibrium?


## Answers:

## I. Multiple Choice:

| 1) $B$ | 11) C | 21) D | 31) A |
| :---: | :---: | :---: | :---: |
| 2) $D$ | 12) $D$ | 22) $B$ | 32) $B$ |
| 3) $A$ | 13) $A$ | 23) C | 33) C |
| 4) $B$ | 14) $B$ | 24) B | 34) $A$ |
| 5) $D$ | 15) A | 25) A | 35) A |
| 6) C | 16) $D$ | 26) C | 36) C |
| 7) $B$ | 17) B | 27) D | 37) C |
| 8) $D$ | 18) C | 28) A | 38) $A$ |
| 9) $A$ | 19) C | 29) A | 39) $A$ |
| 10) C | 20) D | 30) A | 40) A |

## II. Short Answers:

1) Equilibrium shifts left. Trial $\mathrm{K}_{\mathrm{eq}}=6.1 \times 10^{2}$
2) When conc. of $\mathrm{H}_{2}$ increases, rate forward increases. As time proceeds, more HI is produced, therefore, rate reverse will increase. At equilibrium, both rate forward and reverse are constant.
3) $\left[\mathrm{COF}_{2}\right]=0.0653 \mathrm{M}$
4) Keq decreases
5) $\mathrm{K}_{\mathrm{eq}}=4.00$
6) $\left[\mathrm{H}_{2}\right]=0.024 \mathrm{M}$
7) $\left[\mathrm{H}_{2}\right]=0.40 \mathrm{M}$
