For Students:		
Lab performed:		
Lab due:		For Teacher:
Pre-lab completion:	Yes	No
Lab Submitted:	On Time	Late

Introduction:

The rate of a reaction is always expressed as the change in \qquad per unit of \qquad

Objectives

1.
2.
3.
4.

Answer the following questions:

a) In a reaction, it takes 9.05 minutes for a 2.22 kg rock to completely dissolve. Calculate the reaction rate in g / s. Show all work including proper units.
b) A reaction with a production rate of $0.045 \mathrm{~g} / \mathrm{s}$ takes place over 7.2 seconds. Calculate the mass of product formed. Show all work including proper units.
c) A reactant is consumed at a rate of $6.43 \mathrm{~mL} / \mathrm{min}$. If 2.49 mL of the reactant is used up, calculate the reaction time. State your answer in seconds. Show all work including proper units.

Mass of $100 . \mathrm{cm}$ of Mg:		Mass of 1.00 cm of Mg: Concentration of HCl
1.0 M	$\underline{\text { Reaction Time (s) }}$	Reaction Rate: (g/s)
3.0 M		
6.0 M		

Part II: Effect of Temperature on Reaction Rate

Mass of $100 . \mathrm{cm}$ of Mg: 1.7 g		Mass of 1.00 cm of Mg:
(Approx) Temperature	Reaction Time (s)	Reaction Rate: (g/s)
Boiling $=\ldots _{ }^{\circ} \mathrm{C}$		
Hot Water $=\ldots _{ }^{\circ} \mathrm{C}$		
Room Temp. $=\ldots \quad{ }^{\circ} \mathrm{C}$		
Ice Water $=\ldots \quad{ }^{\circ} \mathrm{C}$		

Reactant	Mass CaCO_{3} Reacted	Reaction Time (s)	Reaction Rate (g/s)
CaCO_{3} chip			
CaCO_{3} powder			

Part IV: Effect of a Catalyst on Reaction Rate

Reaction	Reaction Time (s)
With Mn^{2+} catalyst	
Without Mn^{2+} catalyst	

Analysis of Results:

Part I:

1. Look at your results from Part I. What happens to the reaction rate as the concentration of the acid is increased? Explain your answer in terms of collision theory.
2. Draw a line graph of the reaction rate vs. concentration of HCl results from Part I.

3. Use your graph to predict the reaction rate and then calculate the reaction time for a 1.00 cm Mg strip in 4.5 M HCl solution under the same conditions.

Part II:

1. Which reaction's rate was the fastest? Explain your answer in terms of collision theory.
2. Draw a line graph of the reaction rate vs. temperature from Part II.

3. Use your graph to predict the reaction rate and then calculate the reaction time for a 1.00 cm Mg strip in 1.0 M HCl solution at a temperature of $75^{\circ} \mathrm{C}$.

Part III:

1. Look at your results from Part III. Which reaction had the slowest rate? Explain why using collision theory.

Part IV:

1. By what factor (how many more times) did the rate increase when a catalyst was used?

Conclusion:

State the results of Objectives 1, 2, 3, and 4.
1.
2.
3.
4.

