c) What is the oxidation number of Cr in Cr3+?

This one is obvious: the oxidation number (charge on the atom) is +3.

Conclusion: The oxidation number of a monatomic ion is the charge on the ion.

d) What is the oxidation number of S in SO_4^{2-} ?

S
$$O_4$$
 2-
individual charge for an atom \longrightarrow x -2
total charge (all atoms) \longrightarrow x $-8 = -2$

The ion has a 2-charge overall, requiring the solution of the equation:

$$x-8=-2$$
, which gives $x=+6$.

Therefore, the oxidation number of S is +6.

EXERCISES:

3. Calculate the oxidation number of the atom in bold type.

a)	HNO_3	e)	NH ₄	i)	AI (OH) ₄	m)	HCIO ₃	q)	K ₂ UO ₄
b)	NO_2^-	f)	N ₃	j)	S ₂ F ₁₀	n)	$N_2H_5^{\dagger}$	r)	C_3H_6O
c)	$\operatorname{CrO}_{\cdot}^{2-}$	a)	C _o H _o	k)	N _o O _o	o)	NHaOH	s)	S.

c)
$$CrO_4^2$$
 g) C_2H_6 k) N_2O_3 o) NH_2OH s) S_8 d) $Cr_2O_7^{2-}$ h) C_3H_8 l) $HCIO_4$ p) $C_2O_4^{2-}$ t) C_4H_6

4. Assign oxidation numbers to the **bold** species in each of the following unbalanced reaction equations. Then determine which species undergoes oxidation in each reaction.

a)
$$ClO_2 + C \longrightarrow ClO_2^- + CO_3^{2-}$$
 c) $MnO_4^- + C_2O_4^{2-} \longrightarrow MnO_2 + CO_2$
b) $Sn^{2+} + Cl^- + BrO_3^- \longrightarrow SnCl_6^{2-} + Br^-$ d) $NO_3^- + H_2Te \longrightarrow NO + TeO_4^{2-}$

5. Which of the following are redox reactions?

a)
$$l_2 + 5 \text{ HOBr} + H_2O \longrightarrow 2 \text{ IO}_3^- + 5 \text{ Br}^- + 7 \text{ H}^+$$

b) $4 \text{ Ag}^+ + \text{Cr}_2O_7^{2-} + \text{H}_2O \longrightarrow 2 \text{ Ag}_2\text{CrO}_4 + 2 \text{ H}^+$
c) $KHCO_3 + HI \longrightarrow KI + CO_2 + H_2O$
d) $2 \text{ H}_2O \longrightarrow 2 \text{ H}_2 + O_2$
e) $H_2SO_4 + \text{BaCl}_2 \longrightarrow \text{BaSO}_4 + 2 \text{ HCI}_2$
f) $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2$

SNEAKY TRICK!

You will sometimes find that the solution to a problem only requires you to determine which species have been oxidized and which have been reduced. Look at the following oxidations and reductions.

i)
$$CIO_3^- \longrightarrow CIO_4^-$$
 (oxidation: $CI^{5+} \longrightarrow CI^{7+}$)
ii) $H_2O_2 \longrightarrow H_2O$ (reduction: $O^- \longrightarrow O^{2-}$)
iii) $Cr^{3+} \longrightarrow CrO_4^{2-}$ (oxidation: $Cr^{3+} \longrightarrow Cr^{6+}$)
iv) $NO_2 \longrightarrow N_2O_3$ (reduction: $N^{4+} \longrightarrow N^{3+}$)

In each of these cases, THE NUMBER OF ATTACHED OXYGEN ATOMS INCREASES DURING AN OXIDATION, and THE NUMBER OF ATTACHED OXYGENS DECREASES DURING A REDUCTION. In the last example, (iv), the number of oxygens go from 2 O's per N-atom to 1.5 O's per N-atom.