Block:

For Students:	For Teacher:		
Lab performed:	Pre-lab completion:	Yes	
Lab due:	No		
		Lab Submitted:	
	On Time	Late	

Define:

- Saturated solution:
- K_{sp} :
- Solubility:

Calculations:

If 25.0 mL of $0.0250 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ and 40.0 mL of $0.0300 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed, will a precipitate form? The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 6.5×10^{-6}.

Objectives:

1.
2.
3.
4.

Procedure:

Experimental Results: (Pre-lab: Complete grey boxes from lab handout and complete calculations indicated below.)

Test Tube	$\underline{\text { A }}$	B	C	D	E	$\underline{\text { F }}$
Vol. of $0.010 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~mL})$						
Vol. of water added (mL)						
Vol. of $0.020 \mathrm{M} \mathrm{KI}(\mathrm{mL})$						
Vol. of water added (mL)						
Total Volume (mL) (V2)	20.0	20.0	20.0	20.0	20.0	20.0
New $\left[\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right]$ ** calculate before lab**						
New [KI] ** calculate before lab**						
Precipitate or no precipitate at room temperature?						
Temperature at which precipitate dissolves $\left({ }^{\circ} \mathrm{C}\right)$						

1. What are the formula equation, complete ionic equation and net ionic equation for the reaction in this experiment?
2. What is the K_{sp} expression for the precipitate formed in this experiment?
3. Calculate the value of the trial K_{sp} for each test tubes A to F.
4. Which test tubes had a precipitate at room temperature?
5. Which test tubes did not have a precipitate at room temperature?
6. What is the range of values in which your experimental K_{sp} must lie? Explain your answer.
7. What is the trend in the solubility as the temperature is increased? Explain your answer.
8. Compare your $\mathrm{K}_{\text {sp }}$ value range with that obtained from your data booklet. How does it compare?
