For Students:	For Teacher:		
Lab performed:	Pre-lab completion:	Yes	No
Lab due:	Lab Submitted:	On Time	Late

Introduction \& Objectives

Objectives:

1.
2.
3.

Procedure \& Observations
Part I: Sugar vs. Salt
Procedure:

Sugar Formula:	Molar Mass:	Recorded Mass:
Calculate each of the following: Sugar Molecules:		
Carbon Atoms:		
Hydrogen Atoms:		
Oxygen Atoms:		

Salt Formula:	Molar Mass:	Recorded Mass:
Calculate each of the following: Salt Compounds: Sodium Ions: Chloride Ions: 		

Part II: Gas Production

Procedure:

Gas Formula:	Molar Volume (assume STP):	Recorded Volume:
Calculate each of the following: Hydrogen Molecules: Hydrogen Atoms: 		

Procedure:

Salt Formula:	Molar Mass:
Mass of salt required for 40.0 mL of $0.200 \mathrm{M} \mathrm{NaCl}:$	
Colour of Solution 1:	
Mass of salt required for 40.0 mL of $4.85 \mathrm{M} \mathrm{NaCl}:$	
Colour of Solution 2:	

[^0]1. Why do chemists use the mole when determining the number of atoms or molecules in a substance?
2. Within a scoop of sugar, would you expect there to be more molecules of sugar or more atoms of carbons/hydrogens/oxygens? Why?
3. a. Calculate the number of ions from Solution I in Part III
b. Calculate the number of ions from Solution II in Part III
c. Based on your answers to part a and b, state why Solution II sank to the bottom by relating the number of atoms within a solution to the concentration of the solution

Conclusion

State the results of your objectives:
1.
2.
3.

[^0]: Observations:

