For Students:	For Teacher:		
Lab performed:	Pre-lab completion:	Yes	No
Lab due:	Lab Submitted:	On Time	Late

Introduction \& Objectives

Part I:

The formula for baking soda is: \qquad .

When baking soda decomposes, \qquad gas is produced.

Part II:

The precipitate being produced is: \qquad -

Objectives:

1.
2.
3.
4.
5.

Procedure \& Observations

Part I:

Baking soda formula:	Molar Mass:	
Mass of empty test tube:	Mass of test tube + baking soda:	Mass of baking soda:
Mass of test tube + product:	Mass of product:	
Qualitative Observations:		

Part II:

Sodium carbonate formula:	Molar Mass:	Mass of sodium carbonate:
Calcium chloride formula:	Molar Mass:	Mass of calcium chloride:
Qualitative Observations:		
Mass of filter paper:	Mass of filter paper + product:	Mass of product:

Part I:

1. Balanced reaction for the partial decomposition of baking soda (sodium bicarbonate):
\qquad NaHCO_{3} (s) \qquad $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+$ \qquad $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+$ \qquad $\mathrm{CO}_{2}(\mathrm{~g})$
2. Using the initial mass of baking soda used, calculate the mass of sodium carbonate that theoretically should've formed.
3. What mass off sodium carbonate actually formed?
4. Calculate the percent yield.
5. Using the initial mass of baking soda used, calculate the mass of water theoretically formed.
6. Using the percent yield calculated in \#4, calculate the mass of water that was actually formed.
7. Using the initial mass of baking soda used, calculate the mass of carbon dioxide theoretically formed.
8. Using the percent yield calculated in \#4, calculate the mass of carbon dioxide that was actually formed.
9. A pH of under 7 represents an acidic system; a pH higher than 7 represents a basic system. When the Q-tip was placed into the test tube, the pH \qquad (decreased/increased) and the system was determined to be \qquad (acidic/basic).
10. Two of the products react further to produce carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$. Write the chemical reaction for the production of carbonic acid.
\qquad
$+$

Part II:

1. Calculate $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$.
2. Calculate $\left[\mathrm{CaCl}_{2}\right]$.
3. Balance the precipitation reaction and fill in the table below:

4. Calculate the theoretical mass of the precipitate (hint: which reactant is limiting?)
5. What mass of the precipitate actually formed?
6. Calculate the percent yield of the reaction.

Conclusion
State the results of Objectives 1-5
1.
2.
3.
4.
5.

