For Students:	For Teacher:		
Lab performed:	Pre-lab completion:	Yes	
Lab due:	No		
Lab Submitted:	On Time	Late	

Introduction:

Titration is a very important laboratory technique which is used to determine the concentration of a wide variety of chemical substances. A standard solution (one of known molarity) is titrated against (reacted with) another solution in such a manner that the concentration of the second solution may be calculated from the results.

The second solution is added to a known volume of the first solution by means of a burette, which allows the volume of solution delivered to the reaction vessel to be accurately determined.

A chemical indicator is used to show when the reaction is complete.

After reading through the procedure, list the chemicals in the space below.

- Standardized solution:
- Unknown solution:
- Indicator:

Pre-lab calculation:

Calculate the approximate mass of sodium hydroxide needed to make a 250.0 mL of 0.50 M NaOH solution in the space below:

Objectives:

1.
2.

Equipment Used:

\qquad

\qquad

Procedure:

Experimental Results:

Mass of NaOH actually used to make standardized solution: \qquad
[NaOH]:

Titration \#1: Vinegar (Acetic acid) \qquad mL

	Trial 1	Trial 2	Trial 3	Trial 4 (if necessary)	Trial 5 (if necessary)
Initial reading of burette (mL)					
Final reading of burette (mL)					
Total Volume of NaOH used					
Notes:					

Analysis of Results:

1. Write out the balanced formula equation for the titration reaction of $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$ with $\mathrm{NaOH}_{(\mathrm{aq})}$.
2. Calculate the average volume of NaOH used.
3. Calculate the molarity of the acetic acid solution.
