Chemistry 11 Lab Simulation: Reactants, Products and Leftovers Name:

- 1. Go to: <u>https://phet.colorado.edu/en/simulations/reactants-products-and-leftovers</u>
- 2. Click the arrow to launch the simulation.
- 3. Select "Molecules"

4. Select "Make Water" and complete the following table:

Before Reaction			After Reaction			
H ₂	0 ₂	\rightarrow	H2O	H ₂	O ₂	
						L:
2	2					Ex:
						L:
			2	2	0	Ex:
						L:
			2	0	2	Ex:
						L:
6	4					Ex:

5. Select "Make Ammonia" and complete the following table:

Before Reaction			After Reaction			
N ₂	H ₂	\rightarrow	NH ₃	N ₂	H ₂	
						L:
2	3					Ex:
						L:
			2	0	1	Ex:
						L:
3	3					Ex:
						L:
			2	3	1	Ex:

6. Select "Combust Methane" and complete the following table:

Before Reaction							
CH ₄	0 2	\rightarrow	CO ₂	H ₂ O	CH ₄	02	
							L:
1	2						Ex:
							L:
3	3						Ex:
							L:
			1	2	3	1	Ex:
							L:
			2	4	2	0	Ex:

7. Consider the following reaction:

 $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$

A student placed a certain amount of each chemical in a closed system (look at the **INITIAL** box). The reaction is allowed to occur to completion. Sketch in the following **FINAL** pictorial using the symbols used to represent each particle located in the legend *(Table #1)*.

