1. Go to: https://phet.colorado.edu/en/simulations/reactants-products-and-leftovers
2. Click the arrow to launch the simulation.
3. Select "Molecules"

4. Select "Make Water" and complete the following table:

Before Reaction			After Reaction			
\ldots	$\ldots \mathrm{O}_{2}$	\rightarrow	\ldots	-_ H_{2}	\ldots	
2	2					L: Ex:
			2	2	0	L: Ex:
			2	0	2	L: Ex:
6	4					L: Ex:

5. Select "Make Ammonia" and complete the following table:

Before Reaction			After Reaction			
$\ldots \mathrm{N}_{2}$	$\ldots \mathrm{H}_{2}$	\rightarrow	$\ldots \mathrm{NH}_{3}$	$\ldots \mathrm{N}_{2}$	$\underline{-} \mathrm{H}_{2}$	
2	3					L: Ex:
			2	0	1	L: Ex:
3	3					L: Ex:
			2	3	1	L: Ex:

6. Select "Combust Methane" and complete the following table:

Before Reaction			After Reaction				
\ldots	$\ldots \mathrm{O}_{2}$	\rightarrow	$\ldots \mathrm{CO}_{2}$	\ldots	$\underline{-} \mathrm{CH}_{4}$	$\underline{-} \mathrm{O}_{2}$	
1	2						L: Ex:
3	3						L: Ex:
			1	2	3	1	L: Ex:
			2	4	2	0	L: Ex:

7. Consider the following reaction:

$$
3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}
$$

A student placed a certain amount of each chemical in a closed system (look at the INITIAL box). The reaction is allowed to occur to completion. Sketch in the following FINAL pictorial using the symbols used to represent each particle located in the legend (Table \#1).

Table 1: Legend

Particle	Symbol
NO_{2}	\square
$\mathrm{H}_{2} \mathrm{O}$	
HNO_{3}	
NO	

INITIAL (before reaction)

FINAL fafter reaction)

FINAL (excess reactants left over)

