Chemistry 11
Mole I

Name: Notes
Date:
Block:

1. Scientific Notation
 2. Significant Figures

Scientific Notation

A. Scientific Notation

Scientific Notation is a way of writing numbers for values too large or small to be conveniently written in standard decimal notation.

Examples:

$$
\begin{gathered}
25=2.5 \times 10^{1} \\
250=2.5 \times 10^{2} \\
250,000,000=2.5 \times 10^{8} \\
0.000025=2.5 \times 10^{-5}
\end{gathered}
$$

Positive exponent = Large number

Negative exponent = Small number

Write the following numbers in scientific notation:

1. $357,000=3.57 \times 10^{5}=35.7 \times 10^{4}$
2. Un, $_{1,000,000}^{0}=4.1 \times 10^{7}$
3. $\underbrace{0.0 .72}_{0.000572}=510^{-4}$
4. $\frac{0.0000067}{\text { Uư~ }}=6.7 \times 10^{-6}$
5. $810,000=8.1 \times 10^{5}$

Significant Figures

A significant figure is a measured or meaningful digit. They are important in the way we report different kinds of data.
> If a balance gives a reading of 97.53 g when a beaker is placed on it , the reading is considered to have 4 significant figures.
$>$ If the beaker is then put on a different balance and gives a reading of 97.5295 g , there are more significant figures to the measurement (6 significant figures). This balance is more precise than the first balance.

Rules:

1. All non-zero digits are significant
>3.14 has 3 SF
> 18.22 has 4 SF
2. Zeros that are placeholders are not significant
$>\not 0.046$ has 2 SF
>0.581 has 3 SF
>8206 has 2 SF $\longrightarrow 8200$.
>10 has 1 SF
3. Zeros placed between digits are significant
>4002 has 4 SF
> 808 has 3 SF
4. Zeros after a decimal AND other digits are significant
>1.80 has 3 SF
>1.800 has 4 SF
>1.8000 has 5 SF
5. All digits of numbers expressed in scientific notation are significant
$>2.56 \times 10^{17}$ has 3 SF
> 5.6×10^{-7} has 2 SF
!! IMPORTANT: Don't apply the significant figure rules to "counting numbers" (ex. 12 eggs, 4 children, 1 basketball) or conversion factors (ex. $1 \mathrm{~km}=1000 \mathrm{~m}$). These numbers are assumed to be perfect and have infinite significant figures

Practice: how many significant figures does each of the following measurements have?

1. 1.25 kg 3
2. 1255 kg 4
3. $11 \mathrm{~s} \quad 2$
4. $15 \not 0 \mathrm{~m}$ 乙
5. 1.283 cm 4
6. 365.249 days 6
7. $2 d \phi d d \phi d$ years ।
8. 17.25 L
9. 1.053
10. $9 \varnothing \quad \mid$
11. $100.00 \quad 5$
12. 245015
13. $12.12 \quad 4$
14. $123450 \quad 5$
15. $\varnothing .1$ |
16. $\varnothing .100 \quad 3$

B. Adding or Subtracting Significant Figures

When adding or subtracting significant figures, round off the answer to the least number of decimal places contained in the calculation.

Example:

12.56 cm (2 SF after decimal) $+125.8 \mathrm{~cm}(1$ SF after decimal) $=138.36 \mathrm{~cm} \rightarrow$
138.4 cm (1 SF after decimal)

Practice:

1. $\frac{15.1+75.32}{1 \text { Isf } 2 \mathrm{sf}}=90.42=90.4$
2. $\begin{gathered}178.90456-125.8055 \\ 5 \mathrm{sf} \\ 4 \mathrm{sf}\end{gathered}=53.09906=53.0991$
3. $\frac{14.0+2.888}{\text { (1sf) } 3 \mathrm{sf}}=16.888=16.9$
4. $1.805 \times 10^{4}+\underset{2 f f}{5.89 \times 10^{2}}=18639=1.86 \times 10^{4}$

C. Multiplying or Dividing Significant Figures

When multiplying or dividing significant figures, round off the answer to the least number of significant figures contained in the calculation.

Example:

$$
2.00(3 S F) \times 3.00000(6 S F)=6.00(\underline{\underline{3 S F}})
$$

Practice:

1. $12.5 \times 0.50=6.25=6.3$
2. $\begin{gathered}0.15 \times 0.0016 \\ 2 \mathrm{sf} \\ 2 \mathrm{sf}\end{gathered}=2.4 \times 10^{-4}$
3. $40.0 / 30.000=1.3333=1.33$
4. $2.5 \times 7.500 / 0.150=125=130$ 2sf 4 sf 3 sf
5. $\underset{3 \mathrm{sf}}{\left(6.40 \times 10^{8}\right) \times\left(5 \times 10^{5}\right)}=3.2 \times 10^{14}=3 \times 10^{14}$
