Name: Notes Date: **Block:**

Positive exponent =

- 1. Scientific Notation
- 2. Significant Figures

Scientific Notation

A. Scientific Notation

Scientific Notation is a way of writing numbers for values too large or small to be conveniently written in standard decimal notation.

Examples:

$$25 = 2.5 \times 10^{1}$$

$$250 = 2.5 \times 10^{2}$$

$$250,000,000 = 2.5 \times 10^{8}$$

$$0.000025 = 2.5 \times 10^{-5}$$
Large number
$$Large number$$

Write the following numbers in scientific notation:

1. $357,000 = 3.57 \times 10^{5} = 35.7 \times 10^{4}$ 2. $41,000,000 = 4.1 \times 10^{7}$ 3. $0.000572 = 5.72 \times 10^{-4}$ 4. $0.0000067 = 6.7 \times 10^{-6}$ 5. $810,000 = 8.1 \times 10^{5}$

Significant Figures

A significant figure is a **measured** or **meaningful digit.** They are important in the way we report different kinds of data.

- If a balance gives a reading of 97.53 g when a beaker is placed on it, the reading is considered to have 4 significant figures.
- If the beaker is then put on a different balance and gives a reading of 97.5295 g, there are more significant figures to the measurement (6 significant figures). This balance is more precise than the first balance.

Rules:

- 1. All non-zero digits are significant
 - ➤ 3.14 has 3 SF
 - ➤ 18.22 has 4 SF
- 2. Zeros that are placeholders <u>are not</u> significant
 - > 0.046 has 2 SF
 - Ø.581 has 3 SF
 - $> \frac{8200}{\text{has 2 SF}} \longrightarrow \frac{8200}{\text{has 2 SF}}$
 - > 10 has 1 SF

```
ty sigfigs
```

- 3. Zeros placed between digits are significant
 - 4002 has 4 SF
 - 808 has 3 SF
- 4. Zeros after a decimal AND other digits <u>are</u> significant
 - ➤ 1.80 has 3 SF
 - ➤ 1.800 has 4 SF
 - ➤ 1.8000 has 5 SF
- 5. All digits of numbers expressed in scientific notation are significant
 - 2.56 x 10¹⁷ has 3 SF
 - 5.6 x 10-7 has 2 SF

!! IMPORTANT: Don't apply the significant figure rules to "counting numbers" (ex. 12 eggs, 4 children, 1 basketball) or conversion factors (ex. 1km = 1000m). These numbers are assumed to be perfect and have infinite significant figures

Practice: how many significant figures does each of the following measurements have?

1.	1.25 kg 3	9. <mark>1.05</mark> <u>3</u>
2.	1255 kg	10. <mark>9</mark> 0
3.	11s 2	11. <mark>100.00 5</mark>
4.	150 ^m 2	12. <mark>24501</mark> 5
5.	1.283 cm 4	13. <mark>12.12</mark>
6.	365.249 days	14. <mark>12345</mark> 0 5
7.	2 000 000 years /	15. ø.1
8.	17.25 L 4	16. ø.<u>100</u> 3

B. Adding or Subtracting Significant Figures

When adding or subtracting significant figures, round off the answer to the least number of decimal places contained in the calculation.

Example:

Practice:

1.
$$151 + 75.32 = 90.42 = 90.4$$

2. $178.90456 - 125.8055 = 53.09906 = 53.0991$
3. $14.0 + 2.888 = 16.888 = 16.9$
4. $1.805 \times 10^4 + 5.89 \times 10^2 = 18639 = 1.86 \times 10^4$

C. <u>Multiplying or Dividing Significant Figures</u>

When multiplying or dividing significant figures, round off the answer to the least number of significant figures contained in the calculation.

Example:

Practice:

1.
$$12.5 \times 0.50 = 6.25 = 6.3$$

 $3 \text{ sf } 2 \text{ sf } = 2.4 \times 10^{-4}$
2. $0.15 \times 0.0016 = 2.4 \times 10^{-4}$
3. $40.0/30.000 = 1.3333 = 1.33$
 $3 \text{ sf } 5 \text{ sf } = 1.3333 = 1.33$
4. $2.5 \times 7.500/0.150 = 125 = 130$
 $2 \text{ sf } 3 \text{ sf } = 3.2 \times 10^{14} = 3 \times 10^{14}$
5. $(6.40 \times 10^8) \times (5 \times 10^5) = 3.2 \times 10^{14} = 3 \times 10^{14}$