1. Empirical Formula
 2. Percent Composition

Empirical Formula

Molecular Formula:

Ex:

Empirical Formula:

Ex:

Structural Formula:

Ex:

Molecular Formula	Empirical Formula
$\mathrm{P}_{4} \mathrm{O}_{10}$	
$\mathrm{C}_{10} \mathrm{H}_{22}$	
$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{O}_{3}$	
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	
$\mathrm{N}_{2} \mathrm{O}_{4}$	

1. Vinegar is a dilute solution of acetic acid. The molar mass of acetic acid is $60.06 \mathrm{~g} / \mathrm{mol}$ and it has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$. What is the molecular formula of acetic acid?
2. A compound has an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{4}$. Which of the following are possible molar masses of the compound? $20 \mathrm{~g} / \mathrm{mol}, 55 \mathrm{~g} / \mathrm{mol}, 80 \mathrm{~g} / \mathrm{mol}, 120 \mathrm{~g} / \mathrm{mol}$.
3. A compound has an empirical formula of CH_{2} and a molar mass of $42.09 \mathrm{~g} / \mathrm{mol}$. Determine its molecular formula.
4. A compound is 48.65% carbon, 8.11% hydrogen and 43.24% oxygen. Determine the empirical formula. \Rightarrow Think about having 100.0 g of the substance rather than as a $\% \ldots$
\Rightarrow Convert \% into moles...
\Rightarrow Divide each molar quantity by the smallest one
\Rightarrow Multiply by whatever factor is necessary to get a whole number ratio.
5. A compound contains $9.93 \mathrm{~g} \mathrm{C}, 58.6 \mathrm{~g} \mathrm{Cl}$, and 31.4 g F. Determine its empirical formula.
6. A small sample of antifreeze was analyzed. It contained $4.51 \mathrm{~g} \mathrm{C}, 1.13 \mathrm{~g} \mathrm{H}$ and 6.01 g 0 . It was determined that the molar mass is $62.0 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of antifreeze?
7. A hydrocarbon is a compound containing only carbon and hydrogen. One particular hydrocarbon is 92.29% carbon by mass. If the compound's molar mass is $78.0 \mathrm{~g} / \mathrm{mol}$ then what is its molecular formula?

Percent Composition

Percent Composition:

- The percent of a compound's mass contributed by each type of atom in the compound.
- Determined from the formula.

8a. Find the percent of carbon by mass in ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$.
$8 b$. Find the percent of hydrogen by mass in ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$.
9. What is the percent composition of each type of a sugar with the formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

Practice:

10. Calculate the \% composition of the following compounds:
a. FeCl_{2}
b. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
c. $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
d. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
e. NaOH
f. $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$
g. $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$
h. CaCO_{3}
11. Calculate the \% of the bold species in the following compounds:
a. $\mathrm{CaCl}_{2} 2 \mathbf{H}_{2} \mathbf{O}$
b. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{1 8 \mathbf { H } _ { 2 } \mathbf { O }}$
c. $\mathrm{Cr}\left(\mathbf{N H}_{3}\right)_{6} \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{Fe}_{2}\left(\mathbf{S O}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
e. $\mathrm{Cu}\left(\mathbf{C}_{2} \mathbf{H}_{3} \mathbf{O}_{2}\right)_{2} .2 \mathrm{NH}_{3}$
f. $\mathrm{NiSO}_{4} .7 \mathbf{H}_{2}$
12. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} 2.80 \mathrm{~g} / \mathrm{mol}$ and $120 \mathrm{~g} / \mathrm{mol} 3 . \mathrm{C}_{3} \mathrm{H}_{6}$ 4. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ 5. $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ 6. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ 7. $\mathrm{C}_{6} \mathrm{H}_{6} 8 \mathrm{Ba} .79 .85 \%$ b. 20.15\%
13. 42.098% C, 6.491% H, 51.411% O 10a. Fe: 44.06% Cl: 55.94% b. C: 39.99% H: 6.73% O: 53.28%
c. Ca:27.26\% Cl: 48.22\% H: 2.75\% O: 21.77\% d. N: 28.19\% H: 8.13\% P: 20.77\% O: 42.92\%
e. Na: 57.48% 0: 40.00% H: 2.53% f. Ag: 60.81% N: 15.79% H: 3.42% Cl: 19.98%
g. K: 35.62% Fe: 16.96% C: 21.88% N: 25.53% h. Ca: 40.04% C: 12.00% 0: 47.96%

11a. 24.51% b. 48.66% c. 36.70% d. 51.27% e. 54.74% f. 8.37%

