Mole Unit Review

Date:

Complete the following questions on a separate sheet of paper. Ensure all work is shown!

1. Calculate the molar mass of each of the following:
a. $\mathrm{H}_{2} \mathrm{O}$
b. NH_{3}
c. AgNO_{3}
d. $\operatorname{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}$
e. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
f. $\mathrm{CH}_{3} \mathrm{COOH}$
2. Calculate the mass of the following:
a. 4.50 mol of $\mathrm{NH}_{4} \mathrm{Cl}$
b. 3.25 mol of PCl_{3}
c. $\quad 0.00355 \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
d. 0.0125 mol of XeF_{4}
3. Calculate the number of moles in the following:
a. 225 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
b. 55.2 mg of Cl_{2}
c. 2955 kg of Ag
d. 0.0845 g of KMnO_{4}
4. Calculate the molar mass of each of the substances mentioned in the following:
a. A 0.250 mol sample of methane has a mass of 4.00 g .
b. A 0.00248 mol sample of cholesterol has a mass of 0.947 g .
5. Calculate the number of moles contained in each of the following:
a. $\quad 7.50 \times 10^{21}$ molecules of HNO_{3}
b. 425 mg of $\mathrm{Ca}(\mathrm{OH})_{2}$
c. $\quad 10.6 \mathrm{~L}$ of $\mathrm{SO}_{2(\mathrm{~g})}$ at STP
d. 0.950 kg of NaOH
6. Calculate the volume of the following gases at STP:
a. $\quad 0.235 \mathrm{~mol}$ of $\mathrm{B}_{2} \mathrm{H}_{6(\mathrm{~g})}$
b. $2.55 \times 10^{3} \mathrm{~mol}$ of $\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$
7. Calculate the mass of each of the following:
a. $\quad 0.125 \mathrm{~mol}$ of CO_{2}
b. $\quad 5.48 \mathrm{~mol}$ of FeCl_{3}
8. Calculate the mass of 1 mol of each of the following:
a. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Cu}_{3}(\mathrm{OH})_{2}\left(\mathrm{CO}_{3}\right)_{2}$
9. An unknown gas sample contains only one of the compounds $\mathrm{SO}_{3}, \mathrm{CH}_{4}, \mathrm{NF}_{3}$, or $\mathrm{C}_{2} \mathrm{H}_{2}$. If 1 molecule of the gas has a mass of $4.32 \times 10^{-23} \mathrm{~g}$, which type of molecule is contained in the sample?
10. How many atoms are contained in 1 molecule of each of the following?
a. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
b. $\mathrm{NH}_{4} \mathrm{Cl}$
c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
11. How many atoms are contained in the following?
a. 5 molecules of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{4}$
b. 10 molecules of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
12. Find the mass in grams of each of the following:
a. $2 \times 10^{6} \mathrm{CO}$ molecules
b. 1 KOH molecule
c. $\quad 175 \mathrm{~N}$ atoms
d. $1.25 \mathrm{~L}^{\text {of }} \mathrm{NH}_{3(\mathrm{~g})}$ at STP
13. How many atoms are contained in each of the following?
a. 12 g of $\mathrm{H}_{2} \mathrm{O}_{2}$
b. 40.0 g of K
c. $\quad 5.0 \mathrm{~g}$ of NaCl
d. 125 g of $\mathrm{CH}_{3} \mathrm{Cl}$
e. $6.5 \times 10^{-6} \mathrm{~g}$ of Kr
14. What volume at STP is occupied by each of the following?
a. $\quad 16.5 \mathrm{~g}$ of $\mathrm{AsH}_{3(\mathrm{~g})}$
b. 5.65×10^{22} molecules of $\mathrm{POF}_{3(\mathrm{~g})}$
15. How many atoms of N are there in 30.0 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
16. Calculate the percentage composition of the following:
a. $\mathrm{C}_{2} \mathrm{H}_{6}$
b. FeCl_{3}
c. CaCO_{3}
17. Find the empirical formula for the following compounds:
a. $15.9 \% \mathrm{~B}, 84.1 \% \mathrm{~F}$
b. $70.0 \% \mathrm{Fe}, 30.0 \% 0$
c. $46.2 \% \mathrm{C}, 7.69 \% \mathrm{H}, 46.2 \% \mathrm{O}$
d. $50.5 \% \mathrm{C}, 5.26 \% \mathrm{H}, 44.2 \% \mathrm{~N}$
18. A gas has the empirical formula CH_{2}. If 0.850 L of the gas at STP has a mass of 1.59 g , what is the molecular formula?
19. A compound has an empirical formula $\mathrm{C}_{5} \mathrm{H}_{11}$. If 0.0275 mol of the compound has a mass of 3.91 g , what is the molecular formula of the compound?
20. 0.0600 mol of a gas containing carbon and oxygen has a mass of 1.68 g . If the gas is $42.9 \% \mathrm{C}$, what is the empirical and molecular formula of the gas?
21. Calculate the molar concentration of the following solutions:
a. 0.26 mol of HCl in 1.0 L of solution
b. 2.8 mol of HNO_{3} in 4.0 L of solution
c. 25.0 g of NaCl in 250.0 mL of solution
22. How many moles of AlCl_{3} are contained in 350.0 mL of 0.250 M AlCl_{3} ?
23. What volume of $2.8 \times 10^{-2} \mathrm{M} \mathrm{NaF}$ contains 0.15 g of NaF ?
24. How many grams of CaCl_{2} are contained in 225 mL of 0.0350 M CaCl_{2} solution?
