Chemistry 12

Reaction Rates Worksheet

Name: Key
Date:

1. Given the reaction: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

If the rate of formation of NH_{3} is $8.0 \times 10^{-3} \mathrm{~mol} / \mathrm{s}$, calculate the rate of consumption o H_{2} in $\mathrm{mol} / \mathrm{s}$.

$$
\frac{8.0 \times 10^{-3} \mathrm{Mol}_{\mathrm{NH}_{3}}}{1 \mathrm{~s}} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=1.2 \times 10^{-2} \mathrm{~mol} / \mathrm{s} \mathrm{H}
$$

2. Given the reaction: $2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 3 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{AlCl}_{3(\mathrm{aq})}$

If the rate of production of H_{2} is $5.50 \mathrm{~L} / \mathrm{min}$ at STP, calculate the rate of consumption of Al in $\mathrm{g} / \mathrm{min}$.

3. Given the following reaction and graph: $\quad \mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

a) Calculate the average rate of reaction in $\mathrm{mLCO}_{2} / \mathrm{min}$ for the time interval $0-2 \mathrm{~min}$.

$$
\frac{\Delta \text { volume }}{\Delta \text { time }}=\frac{35-0 \mathrm{~mL}}{2-0 \mathrm{~min}}=17.5 \mathrm{~mL} / \mathrm{min}
$$

b) Calculate the average rate of reaction in $\mathrm{mLCO}_{2} / \mathrm{min}$ for the time interval 2-4 min.

$$
\frac{\Delta \text { volume }}{\Delta \text { time }}=\frac{50-35 \mathrm{~mL}}{4-2 \mathrm{~min}}=7.5 \mathrm{~mL} / \mathrm{min}
$$

4. Consider the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{l})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}
$$

If the rate of consumption of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $0.020 \mathrm{~g} / \mathrm{s}$, calculate the rate of production of O_{2} in $\mathrm{mol} / \mathrm{min}$.

$$
\frac{0.020 \mathrm{gH2O}_{\mathrm{H}_{2}}}{18} \times \frac{608}{\mathrm{~min}} \times \frac{1 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{O}_{2}}}{34.0 \mathrm{gHzO}_{2}} \times \frac{1 \mathrm{MOI}_{\mathrm{O}_{2}}}{2 \mathrm{~mol}_{\mathrm{HzO2}}}=1.8 \times 10^{-2 \mathrm{~mol} / \mathrm{min} \mathrm{O}_{2}}
$$

5. Consider the following reaction: $\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$

Outline 3 procedures you could use to monitor the rate of this reaction.
i. Mass: \downarrow in Zncs)
ii. pressure: \uparrow of $\mathrm{H}_{2}(\mathrm{~g})$
iii. $\mathrm{PH}: \mathrm{HCl}$ is an acid; as $[\mathrm{HCl}] \downarrow \mathrm{pH}$ will \uparrow
6. Given the reactions:
a) $2 \mathrm{Ag}^{+}$(aq) $+\mathrm{CrO}_{4}{ }^{2-}$ @a) $\rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}$ (s)
b) $\mathrm{Pb}_{\text {(s) }}+2 \mathrm{HCl}_{\text {@aq) }} \rightarrow \mathrm{PbCl}_{2(\mathrm{aq)}}+\mathrm{H}_{2(\mathrm{~g})}$

Which reaction would be faster at room temperature? A_. Explain your answer.
A. involves the ran of two aqueous species, whereas B. involves the ron of an aqueous and solid species. Aqueous reacts faster than solid
7. Given the same conditions, which of the following reactions is fastest?

```
a. \(\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HI}_{(\mathrm{g})}\)
b. \(\mathrm{Ag}^{+}(9)+\mathrm{I}_{\text {@a }} \rightarrow \mathrm{AgI}_{(\mathrm{s})}\)
c. \(\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\)
d. \(\quad 5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{MnO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+16 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 10 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\)
```

Explain your answer.
B. is the fastest. Although D. also contains aqueous reactants, the complexity of the arrangements of ions to achieve the desired products will slow down the ran.
8. Consider the reaction: $\mathrm{Sn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{SnCl}_{2(\mathrm{aq})}$

Give 4 methods by which the rate of this reaction could be increased.
i. $\uparrow[\mathrm{HCl}]$
ii. $\uparrow S A$ of $S_{n}(s)$
iii. \uparrow temp
iv. add a catalyst
9. . Which of the following reactions will be slowest at $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \text { I. } \mathrm{Cu}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \rightarrow \mathrm{CuS}_{(\mathrm{ss}} \\
& \text { I. } \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \text { III. } \mathrm{Pb}^{2+}(\mathrm{aq}) \\
& \text { IV. } \\
& \text { IV. } 2 \mathrm{NaOCl}_{(\mathrm{aq})} \rightarrow \mathrm{PbCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{O}_{2(\mathrm{~g})}
\end{aligned}
$$

10. Give two procedures which could be used to speed up the reaction you identified in the above question.
i. \uparrow i $S A$ of $C U(s)$ and/or $S_{(s)}$
ii. add a catalyst
