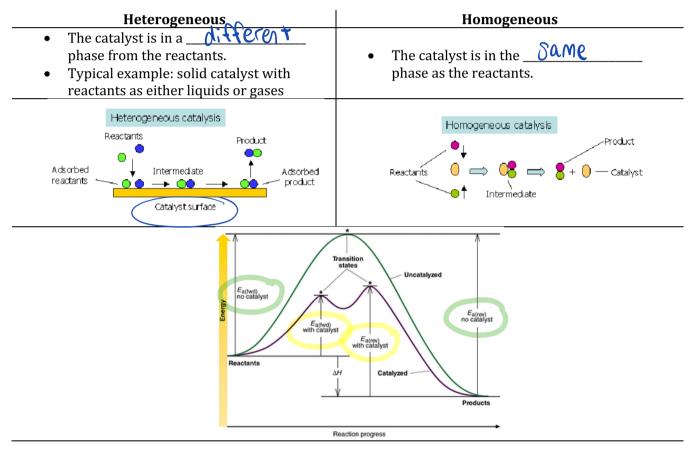

Chemistry 12 Reaction Kinetics III

Name: Date: Block:

1.	Catalysts
1.	Catalysts


2. Mechanisms

Catalysts

Catalysts provide an alternate reaction pathway in which a different, **OWEC - EAR GY** activated complex can form.

• Catalysts must be consumed in one step of a reaction mechanism and regenerated in a later step.

There are two types of catalysts:

It is known that compounds called *chlorofluorocarbons* (C.F.C.s) (eg. CFCl₃) will break up in the presence of ultraviolet radiation, such as found in the upper atmosphere, forming single chlorine atoms:

 $CFCl_3 \rightarrow CFCl_2 + Cl$

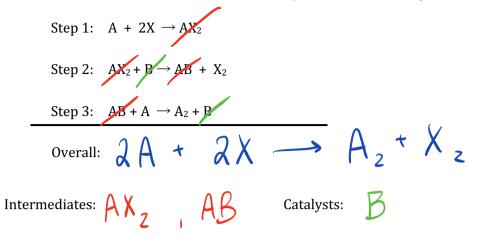
The Cl atoms then react with Ozone (0_3) as outlined in the following mechanism.

Step 1: $c_1 + o_3 \rightarrow c_1 o + o_2$ ∽ multi -step $c_10 + 0 \rightarrow c_1^2 + 0_2$ Step 2: CI) = Catalyst CIO = Intermediate $0 \rightarrow 20_{2}$ Overall:

Mechanisms

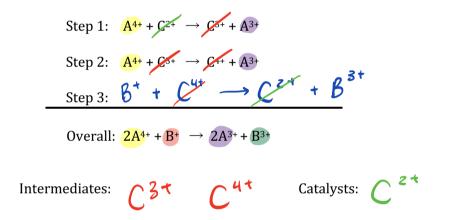
A reaction <u>Mechanism</u> is a series of steps that may be added together to give an overall chemical reaction.

- Cannot be determined by just looking at overall reaction.
- Deduced through much study and research (up to years)
- You will not be asked to come up with mechanism from scratch.
- Some mechanisms are known, however, many are yet to be discovered.


Step 1: Step 2:	$A + B \rightarrow C + B$ $B + E \rightarrow B + F$	Each step is called an <u>elementary</u> step. Intermediate: - A species that is <u>produced</u> in one step and as a then then the step and as a then the step and as a step and				
Overall:	$A + E \rightarrow C + F$	 Cancelled out and not included in the overall reaction 				
Intermediate: Catalyst: B)	 Catalyst: A A species that is <u>reacted</u> in one step and then <u>produced</u> in a later step. Cancelled out and not included in the overall reaction 				
Overall Reaction: - Comprised of the species that are not cancelled out						
Example: (known mechanism) $4 \text{ HBr} + 0_2 \rightarrow 2 \text{ H}_2 0 + 2 \text{ Br}_2$						
Geometry Mechanism: (determ)	and sufficient ined from lots of resear	rch) Intermediates				
Step 1: Step 2:	$HBr + O_2 \rightarrow H$ $HBr + HOOBr \rightarrow 2$	2 HOBr (fast) Catalyst : (none)				
Step 3: Overall:	$2 \text{ HOBr} + 2 \text{ HBr} -$ $4 \text{ HBr} + \text{O}_2 \rightarrow 2 \text{ HBr}$	$\rightarrow 2 H_2 O + 2 Br_2 (moderate)$ $H_2 O + 2 Br_2$				

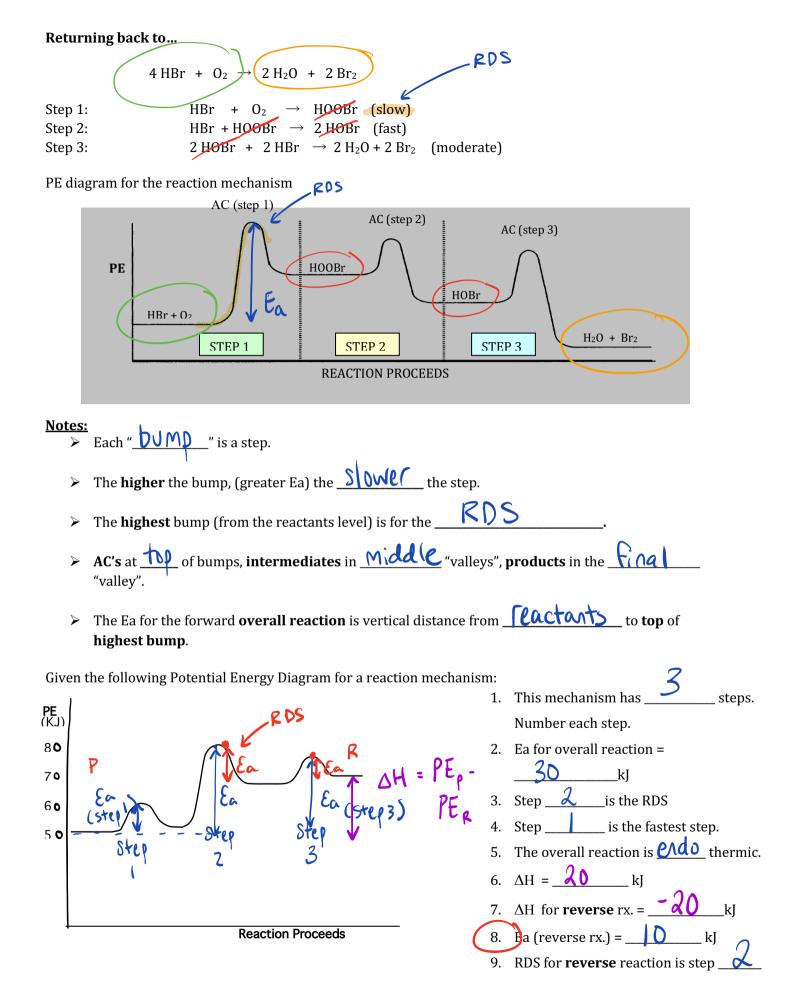
Rate determining step (RDS) - the <u>Slowest</u> step in the mechanism.

- This step determines the **overall rate** for the whole reaction.
- Since each step occurs sequentially, the only way to speed up an overall reaction is to speed up the RDS (eg. by increasing the concentration of a reactant in the RDS)


Practice 1:

Determine the overall reaction, intermediates and catalysts for the following mechanism:

Practice 2:

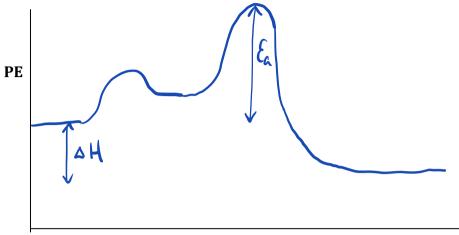

Determine the 3rd step, intermediates and catalysts of the following mechanism:

Practice 3:

Determine the 2nd step, intermediates and catalysts of the following mechanism:

	Step 1:	$Cl_2 \rightarrow cl + c$		
	Step 2:	CHCI3 + C	$T \rightarrow Cet_3$	+ HC(
	Step 3:	$Cl + CCl_3 \rightarrow 0$	CCl ₄	
	Overall:	$Cl_2 + CHCl_3 \rightarrow$	HCl + CCl ₄	
Inter	rmediates: C	CCI3	Catalysts:	(none)

Draw a **Potential Energy Diagram** for a **reaction mechanism** with **2 steps**.


• The first step is **fast** and the second step is **slow**.

Small

pump

- The first step is **endothermic** and the second step is **exothermic**.
- The overall reaction is **exothermic**.
- With labeled arrows show the overall Activation Energy (E_a) and the ΔH for the forward reaction.

0,6

Reaction Proceeds

- 1. In the following reaction mechanisms, identify:
 - i. The catalyst
 - ii. The reaction intermediates
 - iii. The overall reaction
- a) $2 \text{ NO} \rightarrow N_2 O_2$ $N_2 O_2 + H_2 \rightarrow N_2 O + H_2 O$ $N_2 O + H_2 \rightarrow N_2 + H_2 O$

(none)
$$ii. N_2 O_2$$
, $N_2 O$

b) $A + B \rightarrow \mathcal{C}$ $\mathcal{C} + \mathcal{D} \rightarrow \mathcal{D} + F$ $F + B \rightarrow \mathcal{D} + F$

i.

i. **D**

$$A + 2B \rightarrow 2F$$

iii. $2NO + 2H_2 \rightarrow N_2 + 2H_2O$

2. "All catalyzed reaction mechanisms have more than one step." Why must this statement be true?

iii.

```
A catalyst must be consumed in one step
and regenerated in another
```

3. Suppose a catalyzed reaction is occurring in a reaction container. If the catalyst were removed what would happen to the rate of reaction? Explain your answer.

your reaction would slow down.

ii. C E

4. Consider the following reaction mechanism:

 $X + Y \rightarrow Z \text{ (very fast)}$ $Z + Y \rightarrow P \text{ (slow)}$

 $P + Y \rightarrow Q$ (very fast)

Suppose there were a catalyst that would work on step 1 and another catalyst that would work on step 2. Which catalyst would be ineffective in increasing the overall reaction? Why?

The catalyst in step I would be ineffective 4 In order to 1 the overall on rate, we must speed up the RDS. 5. Consider the following reaction: $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$ The rate law is found through experiments to be rate = $k[NO]^2$.

A valid mechanism is consistent with the overall equation and the experimentally-determined rate law. Which of the following proposed mechanisms is consistent with the reaction data? Explain your answer.

Mechanism 1: (1) $NO + O_2 \rightarrow NO_2 + O$ (2) $NO + O \rightarrow NO_2$	slow fast
Mechanism 2: (1) $N0 + 0_2 \rightarrow N0_3$ (2) $N0_3 + N0 \rightarrow 2 N0_2$	fast slow
Mechanism 3: (1) 2 NO \rightarrow N ₂ O ₂ (2) N ₂ O ₂ + O ₂ \rightarrow 2 NO ₂	slow fast

Complete Reaction Mechanisms Worksheet

<u>Hebden Workbook</u> <u>Pg. 28 #46, 53</u> <u>Pg. 34 #56, 57, 59, 60, 61</u>