
- 1. Catalysts
- 2. Mechanisms

Catalysts

Catalysts provide an alternate reaction pathway in which a different, ______ activated complex can form.

• Catalysts must be consumed in one step of a reaction mechanism and regenerated in a later step.

There are two types of catalysts:

It is known that compounds called *chlorofluorocarbons* (C.F.C.s) (eg. CFCl₃) will break up in the presence of ultraviolet radiation, such as found in the upper atmosphere, forming single chlorine atoms:

The Cl atoms then react with Ozone (03) as outlined in the following mechanism.

Step 1:
$$Cl + O_3 \rightarrow ClO + O_2$$

Step 2:
$$ClO + O \rightarrow Cl + O_2$$

Overall:

Mecl	nanisms						
A reac		is a series of ste	ps that may be added together to give an overall chemical				
•	Deduced throu You will not b	-					
			Each step is called an step.				
	Step 1:	$A + B \rightarrow C + D$	Intermediate:				
	Step 2:	$D + E \rightarrow B + F$	- A species that is in one step and then in a later step.				
_	Overall:	$A + E \rightarrow C + F$	- Cancelled out and not included in the overall reaction				
I	ntermediate:		Catalyst:				
Catalyst:			 A species that is in one step and then in a later step. Cancelled out and not included in the overall reaction 				
			Overall Reaction:				
			 Comprised of the species that are not cancelled out 				
Exam	ple: (known med 4 HB1	chanism) $r + O_2 \rightarrow 2 H_2 O +$	2 Br ₂				
Unlike	ely to occur in or		nires molecules to find each other with favourable				
Mecha	anism: (determi	ined from lots of resear					
	Step 1:	$HBr + O_2 \rightarrow I$	IOOBr (slow)				

Step 1: HBr +
$$O_2 \rightarrow HOOBr$$
 (slow)

Step 2: HBr + HOOBr \rightarrow 2 HOBr (fast)

Step 3: 2 HOBr + 2 HBr \rightarrow 2 H₂O + 2 Br₂ (moderate)

Overall: 4 HBr + $O_2 \rightarrow$ 2 H₂O + 2 Br₂

Rate determining step (RDS) - the ______ step in the mechanism.

- This step determines the **overall rate** for the whole reaction.
- Since each step occurs sequentially, the only way to speed up an overall reaction is to speed up the RDS (eg. by increasing the concentration of a reactant in the RDS)

Practice 1:

Determine the overall reaction, intermediates and catalysts for the following mechanism:

Step 1:
$$A + 2X \rightarrow AX_2$$

Step 2:
$$AX_2 + B \rightarrow AB + X_2$$

Step 3:
$$AB + A \rightarrow A_2 + B$$

Overall:

Intermediates:

Catalysts:

Practice 2:

Determine the 3rd step, intermediates and catalysts of the following mechanism:

Step 1:
$$A^{4+} + C^{2+} \rightarrow C^{3+} + A^{3+}$$

Step 2:
$$A^{4+} + C^{3+} \rightarrow C^{4+} + A^{3+}$$

Overall:
$$2A^{4+} + B^{+} \rightarrow 2A^{3+} + B^{3+}$$

Intermediates:

Catalysts:

Practice 3:

Determine the 2nd step, intermediates and catalysts of the following mechanism:

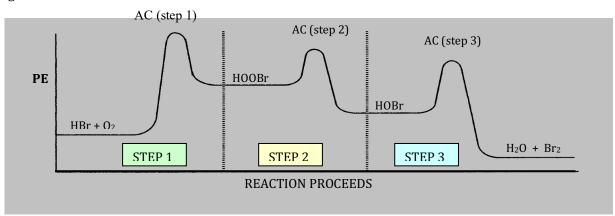
Step 1:
$$Cl_2 \rightarrow Cl + Cl$$

Step 2:

Step 3:
$$Cl + CCl_3 \rightarrow CCl_4$$

Overall:
$$Cl_2 + CHCl_3 \rightarrow HCl + CCl_4$$

Intermediates: Catalysts:


Returning back to...

$$4~HBr~+~O_2~\rightarrow~2~H_2O~+~2~Br_2$$

Step 1: HBr +
$$O_2 \rightarrow HOOBr$$
 (slow)
Step 2: HBr + $HOOBr \rightarrow 2 HOBr$ (fast)

Step 3:
$$2 \text{ HOBr} + 2 \text{ HBr} \rightarrow 2 \text{ H}_2\text{O} + 2 \text{ Br}_2 \pmod{\text{moderate}}$$

PE diagram for the reaction mechanism

Notes:

- Each "_____" is a step.
- The **higher** the bump, (greater Ea) the _____ the step.
- The **highest** bump (from the reactants level) is for the _____.
- > **AC's** at _____ of bumps, **intermediates** in _____ "valleys", **products** in the _____ "valley".
- > The Ea for the forward **overall reaction** is vertical distance from ______ to **top** of **highest bump**.

Given the following Potential Energy Diagram for a reaction mechanism:

PE (KJ)

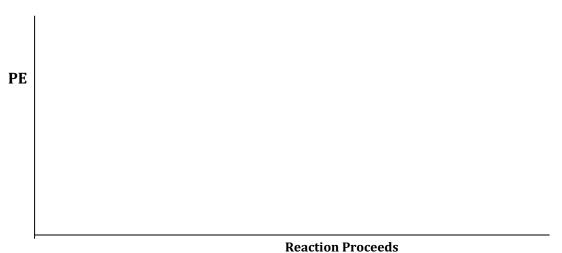
8

7

6

5

Reaction Proceeds


- This mechanism has _____ steps.
 Number each step.
- 2. Ea for overall reaction =

____kJ

- 3. Step _____is the RDS
- 4. Step _____ is the fastest step.
- 5. The overall reaction is _____ thermic.
- 6. $\Delta H = ____ kJ$
- 7. ΔH for **reverse** rx. = ____kJ
- 8. Ea (reverse rx.) = _____ kJ
- 9. RDS for **reverse** reaction is step _____

_		_		_	_			
Drawa	Potential	Fnorov	Diagram	for a rea	ction	mechanism	with 2	ctone
Diaw a	1 Ottimuai	Liicigy	Diagi aiii	ioi a i ca	CUOII	mcchamsm	WILLI Z	oceps

- The first step is **fast** and the second step is **slow**.
- The first step is **endothermic** and the second step is **exothermic**.
- The overall reaction is **exothermic**.
- With labeled arrows show the overall Activation Energy (E_a) and the ΔH for the forward reaction.

- 1. In the following reaction mechanisms, identify:
 - i. The catalyst
 - ii. The reaction intermediates
 - iii. The overall reaction
- a) $2 \text{ NO} \rightarrow \text{N}_2\text{O}_2$ $\text{N}_2\text{O}_2 + \text{H}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$ $\text{N}_2\text{O} + \text{H}_2 \rightarrow \text{N}_2 + \text{H}_2\text{O}$ i. ii.
- b) $A + B \rightarrow C$ $C + D \rightarrow E + F$ $E + B \rightarrow D + F$ i. ii. iii.
- 2. "All catalyzed reaction mechanisms have more than one step." Why must this statement be true?

iii.

3. Supposed a catalyzed reaction is occurring in a reaction container. If the catalyst were removed what would happen to the rate of reaction? Explain your answer.

4. Consider the following reaction mechanism:

$$X + Y \rightarrow Z$$
 (very fast)

$$Z + Y \rightarrow P (slow)$$

$$P + Y \rightarrow Q$$
 (very fast)

Suppose there were a catalyst that would work on step 1 and another catalyst that would work on step 2. Which catalyst would be ineffective in increasing the overall reaction? Why?

5. Consider the following reaction:

$$2 \text{ NO (g)} + O_2 (g) \rightarrow 2 \text{ NO_2 (g)}$$

The rate law is found through experiments to be rate = $k[NO]^2$.

A valid mechanism is consistent with the overall equation and the experimentally-determined rate law. Which of the following proposed mechanisms is consistent with the reaction data? Explain your answer.

Mechanism 1:

(1)
$$NO + O_2 \rightarrow NO_2 + O$$
 slow

(2)
$$NO + O \rightarrow NO_2$$
 fast

Mechanism 2:

(1)
$$NO + O_2 \rightarrow NO_3$$
 fast

(2)
$$NO_3 + NO \rightarrow 2 NO_2$$
 slow

Mechanism 3:

(1)
$$2 \text{ NO} \rightarrow \text{N}_2\text{O}_2$$
 slow

(2)
$$N_2O_2 + O_2 \rightarrow 2 NO_2$$
 fast

Complete Reaction Mechanisms Worksheet

<u>Hebden Workbook</u>

Pg. 28 #46, 53

Pg. 34 #56, 57, 59, 60, 61