

(2) Calculate the concentration of each ion in a solution formed with 25 mL of 0.50 M MgCl₂ is mixed with 10. mL of 0.60 M AlCl₃.

What is the final volume?

35mL

 $C_7 = 0.36 M$

- When one solution is added to another solution, both are diluted. What is the diluted concentration of each solution? [MgClz] [AICI3] $(0.50M)(25ML) = C_2(35ML) \qquad (0.60M)(10ML) = C_2(35ML)$ $C_2 = 0.3LM$ $I_1 = C_2 V_2$
 - What is the concentration of the ions in each solution? (You will need a dissociation equation).

 $C_{7} = 0.17M$

Pb⁽²⁺⁾-

What is the final concentration of each of the ions?

$$[Mg^{2+}] = 0.36M$$

 $[A1^{3+}] = 0.17M$
 $[C1^{-}] = 0.72 + 0.51 = 1.23M$

Moi 11 M PbS04

(3) Calculate the molar solubility of lead (II) sulphate if 500. mL of saturated solution contains 0.0200 g of lead (II) sulphate.

$$\frac{0.0200g}{0.500L} \times \frac{1 \text{ mol}}{303.3g} = 1.32 \times 10^{-4} M$$

= 0.000132 M

(4) The molar solubility of lead (II) chloride is 0.014 M at 25°C. What is the solubility in g/mL?

(5) The solubility of lead (II) iodate is 4.5 x 10⁻⁵ M. What mass of lead (II) iodate is dissolved in 300. mL of saturated solution?

$$\frac{4.5 \times 10^{-5} \text{ mot}}{1 \text{ Jc}} \propto \frac{0.300 \text{ Jc}}{1 \text{ Mot}} \approx \frac{557.09}{1 \text{ Mot}} = 7.5 \times 10^{-3} \text{ g}$$

$$\frac{9 \text{ b}^{2+}}{10_3} 10_3$$
Worksheet
$$\frac{1000}{100} = 1000 \text{ Jc}$$

Predicting Solubility

	Se	OLUBILITY OF COMMON COMPOUNDS IN V	WATER				
		The term soluble here means $> 0.1 \text{ mol/L}$ at 25°C.			CATION & ANION		
	Negative Ions (Anions)	Positive Ions (Cations)	Solubility o Compound	of Is	And the		
_	All	Alkali ions: Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺	Soluble		Remember Soluble = dissolves		
_	All	Hydrogen ion: H*	Soluble				
_	All	Ammonium ion: NH4 *	Soluble				
	Nitrate, NO ₃ ⁻	All	Soluble		AqueousCation and anion DO NOT form a		
0	Chloride, Cl ⁻	All others	Soluble		precipitate		
0	Bromide, Br ⁻ r Iodide, I ⁻	Ag ⁺ , Pb ²⁺ , Cu ⁺	I	Low Solubility	Low Solubility = does not dissolve • Solid		
	Sulphate, SO ₄ ²⁻	All others	Soluble				
5		Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺		Low Solubility	 Cation and anion DO form a precipitate 		
	Sulphide, S ²⁻	Alkali ions, H^+ , NH_4^+ , Be^{2+} , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+}	Soluble				
_		All others	I	Low Solubility	How to read the table:		
	Hydroxide, OH ⁻	Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺	Soluble		$\Rightarrow Identify ANION$		
_		All others	I	Low Solubility	\Rightarrow Identify CATION \Rightarrow Soluble (aq) or Low Soluble (s)		
0	Phosphate, PO ₄ ³⁻	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble				
0	r Carbonate, CO ₃ ²⁻ Sulphite, SO ₃ ²⁻	All others	I	Low Solubility			

Practice:

1. Classify the following salts as being soluble or having low solubility in water:

a.	Copper (II) chloride	Cu ²⁺	CI-	Soluble -> (aq) dissolved
b.	Aluminum hydroxide	A134	OH-	IOW Solubility -> (s) precipitates
C.	Sodium phosphate	1a+	POy^{3-}	Soluble
d.	Calcium sulphate		·	low solubility
e.	Iron (II) sulphide			low solubility
f.	Strontium hydroxide			soluble
g.	Zinc bromide			Soluble
h.	Cesium sulphite			Soluble
i.	Potassium chromate			soluble

- 2. Write the formula for the following: Co_3
- a. A salt containing carbonate that is soluble ionic

Compound

 H_2CO_3 , $(NH_4)_2CO_3$, Na_2CO_3 , etc.

b. A salt containing sulphate with low solubility

c. A cation that forms a salt with low solubility with both chloride and sulphate ions

$$Ag^{+}$$
, Pb^{2+}

d. An anion that forms soluble salts with all cations.

NO2

Soluble

3. A student is given a sample of either magnesium nitrate or strontium nitrate. When a few drops of a solution of sodium hydroxide is added to the sample, no precipitate forms. Does the sample contain magnesium nitrate or strontium nitrate? Explain your reasoning.

Formula Equation: shows the chemical formulas of the compounds and their states

$$2 \text{ KI}_{(aq)} + Pb(NO_3)_2 _{(aq)} \Leftrightarrow 2 \text{ KNO}_3 _{(aq)} + PbI_2 _{(s)}$$

solubility

<u>Complete Ionic Equation</u>: shows the soluble salts represented in their dissociated form.

 $2K_{(aq)} + 2I_{(aq)} + Pb_{(aq)}^{2+} + 2NO_{3(aq)} \rightleftharpoons 2K_{(aq)}^{+} + 2NO_{3(aq)}$ PbI, (s)

Net Ionic Equation: shows only the ions that take part in the reaction. Ions that are the same on both sides of the equation are called **spectator ions**.

Pb^{zt}(aq) + 2I(aq) ⇒ PbIz(s) Spectator ions : K+, NO3-

> low solubility

Practice:

1. Write the formula for the precipitate that forms when the following solutions are mixed:

a. BaS and MgSO₄

b. $\underline{NH_4OH}$ and $\underline{FeBr_2}$

c. $\underline{H_3PO_4}$ and $\underline{ZnCl_2}$

d. $\underline{K_2CO_3}$ and $\underline{CrSO_4}$

$$Cr CO_3$$
 (s)

e. MnI2 and Sr(OH)2 Mn(OH)Z(S) Keep together don't dissociate

2. Write a formula equation, complete ionic equation and net ionic equation for the following reactions:

a. Strontium hydroxide and silver nitrate

$$Sr(OH)_{2(opt)} \downarrow 2 Ag NO_{3(oq)} \rightleftharpoons Sr(NO_{3})_{2(oq)} \downarrow 2 Ag OH_{(s)}$$

 $Sr^{2+}(opt) + 2OH^{-}(oq) + 2 Ag^{+}(opt) + 2NO_{3}^{-}(opt) \rightleftharpoons Sr^{2+}(opt) + 2NO_{3}^{-}(opt) + 2Ag OH_{(s)}$
 $2 Ag^{+}(oqt) + 2 OH^{-}(oqt) \rightleftharpoons 2 Ag OH_{(s)}$

b. Magnesium sulphide and zinc chloride $Mg S_{(aq)} + ZnCI_{z(aq)} \rightleftharpoons MgCI_{z(aq)} + ZnS_{(s)}$ $Mg^{2t}_{(aq)} + S^{2}_{(aq)} + Zn^{2t}_{(aq)} + 2CI_{(aq)} \rightleftharpoons Mg^{2t}_{(aq)} + 2CI_{(aq)} + ZnS_{(s)}$ $Zn^{2t}_{(aq)} + S^{2}_{(aq)} \rightleftharpoons S_{(s)}$

c. Sodium carbonate and barium sulphide

$$Na_2 CO_3 (aq)^+ Ba S (cq) \rightleftharpoons Na_2 S (aq)^+ Ba CO_3 (s)$$

 $2Na^+ (cq)^+ CO_3^{2^-} (cq)^+ Ba^{2^+} (cq)^+ S^{2^-} (cq)^+ Ba CO_3 (s)$
 $Ba^{2^+} (cq)^+ CO_3^{2^-} (cq)^+ Ba CO_3 (s)$

d.
$$(NH_4)_{2}S_{(aq)} + FeSO_{4(aq)} \rightarrow (NH_4)_2 SO_4 (aq) \rightarrow FeS_{cs}$$

 $2NH_4^+(aq) + S^{2-}_{(aq)} + Fe^{2+}(aq) + SO_4^{2-}(aq) \rightarrow 2NH_4^+(aq) + SO_4^{2-}(aq) + FeS_{cs}$
 $Fe^{2+}(aq) + S^{2-}_{(aq)} \rightarrow FeS_{cs}$

e.
$$H_2SO_3(aq) + CaCl_2(aq) \rightarrow 2HCI_{(aq)} + CaSO_3(s)$$

 $2H^{+}(aq) + SO_3^{2-}(aq) + Ca^{2+}(aq) + 2CI_{(aq)} \rightarrow 2H^{+}(aq) + 2CI_{(aq)} + CaSO_3(s)$
 $Ca^{2+}(aq) + SO_3^{2-}(aq) \rightarrow CaSO_3(s)$

f. Copper (II) sulphate + calcium sulphide
$$\rightarrow$$

 $Cu SO_4(aq) + Ca S(aq) \rightarrow Ca SO_4(s) + Cu S(s)$
 $Cu^{2t}_{(aq)} + SO_4^{2t}_{(aq)} + Ca^{2t}_{(aq)} + S^{2t}_{(aq)} \rightarrow Ca SO_4(s) + Cu S(s)$
 $Cu^{2t}_{(aq)} + SO_4^{2t}_{(aq)} + Ca^{2t}_{(aq)} + S^{2t}_{(aq)} \rightarrow Ca SO_4(s) + Cu S(s)$

Hebden Workbook Pg. 81 #18-20, Pg. 87 # 25