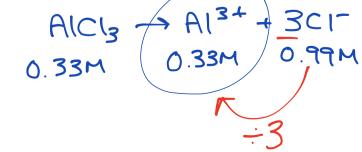

## **Chemistry 12 Solubility Calculations Worksheet**



1. **5.62g** of Na<sub>2</sub>SO<sub>4</sub> is dissolved in enough water to make 750.0 mL of solution.



3. Calculate the mass of K<sub>2</sub>CrO<sub>4</sub> needed to make 3.00L of a 0.0200M solution.


$$\frac{3.00 k}{l} \times \frac{0.0200 m k z cro4}{l k} \times \frac{194.29}{l m 0 k z cro4} = \begin{bmatrix} 1.79 \ k_2 cro4 \end{bmatrix}$$

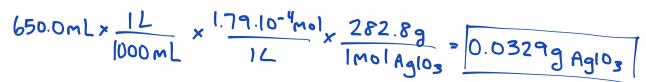
 $Mg(NO_3)_2 \rightarrow Mg^2 + 2NO_3^2$   $0.120M \qquad 0.120M$ 4. 150.0 mL of a 0.400 M solution of Mg(NO<sub>3</sub>)<sub>2</sub> is diluted to a volume of 500.0 mL by adding water. Calculate the final nitrate ion concentration.

$$C_1 V_1 = C_2 V_2$$
  
(0.400M)(150.0-L) = (C\_2)(500.0-L)  
C\_2 = 0.120M = Mg(NO\_3)\_2

5. What volume if 0.250M NaNO<sub>3</sub> solution needs to be evaporated in order to produce 68.0 grams of solid NaNO<sub>3</sub>?

6. The concentration of chloride ion, [Cl<sup>-</sup>] in a solution of aluminum chloride is 0.99M. Calculate the [Al<sup>3+</sup>] in the same solution.




7. 4000 mL of 0.200 LisPO, is mixed with 200.0 mL of 0.250 M Na<sub>2</sub>CO<sub>2</sub> Calculate the final concentration of all four ions in the final mixture.  

$$\begin{bmatrix} \lfloor i_{3} P O_{4} \end{bmatrix}$$
(0.200 M)(400.0 mL) =  $(C_{2})(600.0 mL)$ 
( $C_{2} = 0.0853 M$ 
( $O_{2} = 0.03125 M$ 

11. It is found that 13.01g is the maximum mass of  $PbCl_2$  which will dissolve in 3.0L of solution. Use this information to calculate the concentration of  $PbCl_2$ .

$$\frac{|3.0|gpbCl_2}{3.0L} \times \frac{|molpbCl_2}{278.2g} = 0.016Mpbcl_2$$

12. The concentration of silver iodate (AgIO<sub>3</sub>) is 1.79 x 10<sup>-4</sup>M. Calculate the mass of silver iodate that can be dissolved in 650 mL of water.

