1. 5.62 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in enough water to make 750.0 mL of solution.
a. Calculate the $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]$.
b. Calculate the $\left[\mathrm{Na}^{+}\right]$.
2. 250.0 mL of water are added to 600.0 mL of a 6.0 M HCl solution. Calculate the final $[\mathrm{HCl}]$.
3. Calculate the mass of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ needed to make 3.00 L of a 0.0200 M solution.
4. $\quad 150.0 \mathrm{~mL}$ of a 0.400 M solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is diluted to a volume of 500.0 mL by adding water. Calculate the final nitrate ion concentration.
5. What volume if $0.250 \mathrm{M} \mathrm{NaNO}_{3}$ solution needs to be evaporated in order to produce 68.0 grams of solid NaNO_{3} ?
6. The concentration of chloride ion, $\left[\mathrm{Cl}^{-}\right]$in a solution of aluminum chloride is 0.99 M . Calculate the $\left[\mathrm{Al}^{3+}\right]$ in the same solution.
7. 400.0 mL of $0.200 \mathrm{M} \mathrm{Li}_{3} \mathrm{PO}_{4}$ is mixed with 200.0 mL of $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$. Calculate the final concentration of all four ions in the final mixture.
8. $\quad 300.0 \mathrm{~mL}$ of $0.100 \mathrm{M} \mathrm{Li}_{3} \mathrm{PO}_{4}$ is mixed with 500.0 mL of $0.050 \mathrm{M} \mathrm{Li}_{2} \mathrm{CO}_{3}$. Calculate the final concentration of all three ions in the final mixture.
9. Calculate the volume of $12.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ which needs to be added to 500.0 mL of water in order to produce a solution in which $\left[\mathrm{Na}^{+}\right]=0.200 \mathrm{M}$
10. The molar solubility of calcium sulphate is $8.43 \times 10^{-3} \mathrm{M}$. Calculate the mass of solid calcium sulphate which can be evaporated from 250.0 mL solution of calcium sulphate.
11. It is found that 13.01 g is the maximum mass of PbCl_{2} which will dissolve in 3.0 L of solution. Use this information to calculate the concentration of PbCl_{2}.
12. The concentration of silver iodate $\left(\mathrm{AgIO}_{3}\right)$ is $1.79 \times 10^{-4} \mathrm{M}$. Calculate the mass of silver iodate that can be dissolved in 650 mL of water.
