Chemistry 12

Solubility Calculations Worksheet

Name:
Date:
Block:

1.	$5.62g$ of Na_2SO_4 is dissolved in enough water to make 750.0 mL of solution. a. Calculate the $[Na_2SO_4]$.
	b. Calculate the [Na+].
2.	250.0mL of water are added to 600.0mL of a 6.0M HCl solution. Calculate the final [HCl].
3.	Calculate the mass of K_2CrO_4 needed to make 3.00L of a 0.0200M solution.
4.	150.0 mL of a 0.400 M solution of $Mg(NO_3)_2$ is diluted to a volume of 500.0 mL by adding water. Calculate the final nitrate ion concentration.
5.	What volume if $0.250M$ NaNO $_3$ solution needs to be evaporated in order to produce 68.0 grams of solid NaNO $_3$?
6.	The concentration of chloride ion, [Cl $^{-}$] in a solution of aluminum chloride is 0.99M. Calculate the [Al $^{3+}$] in the same solution.

7.	$400.0\ mL$ of $0.200\ M$ Li $_3PO_4$ is mixed with $200.0\ mL$ of $0.250\ M$ Na $_2CO_3$. Calculate the final concentration of all four ions in the final mixture.
8.	$300.0\ mL$ of $0.100M\ Li_3PO_4$ is mixed with $500.0\ mL$ of $0.050M\ Li_2CO_3$. Calculate the final concentration of all three ions in the final mixture.
9.	Calculate the volume of 12.0 M Na $_2$ SO $_3$ which needs to be added to 500.0 mL of water in order to produce a solution in which [Na $^+$] = 0.200M
10.	The molar solubility of calcium sulphate is 8.43×10^{-3} M. Calculate the mass of solid calcium sulphate which can be evaporated from 250.0 mL solution of calcium sulphate.
11.	It is found that $13.01g$ is the maximum mass of $PbCl_2$ which will dissolve in $3.0L$ of solution. Use this information to calculate the concentration of $PbCl_2$.
12.	The concentration of silver iodate (AgIO $_3$) is 1.79 x 10 ⁻⁴ M. Calculate the mass of silver iodate that can be dissolved in 650 mL of water.