Solubility Equilibrium II

Name: Date: Block:

- 1. Forming a Precipitate
- 2. Solubility Product Constant (One Source of Ions)

Forming a Precipitate

Example:

A solution may contain the ions Ca^{2+} , Sr^{2+} and Zn^{2+} . How would you precipitate the ions out of solution individually? Describe your answer using a flow chart.

- All are cations therefore an addition of an _____ will precipitate out these cations.
- There are also ______ in the solution to help balance out the charge.

- What can precipitate out Ca²⁺?
- What can precipitate out Sr²⁺?
- What can precipitate out Zn²⁺?
- What needs to be added first?

As a flow chart:

Ca²⁺, Sr²⁺, Zn²⁺

Practice:

- 1. For each of the following solutions, describe a process to individually remove each ion. Be sure to list the compounds that you add in order, and the method of removing the precipitate.
 - a. Ag+ Ba²⁺ and Be²⁺

b. Br-, SO₄ ²⁻ and S²⁻

c. OH-, PO₄3- and S²-

d. Cr^{3+} , Ca^{2+} and Mg^{2+}

Solubility	Product	Constant	K _{sn} (One	Source o	f Ions

In a **saturated** solution, **equilibrium** is established between the dissolving and recrystallization of a salt.

$$AB_{(s)} = A^+_{(aq)} + B^-_{(aq)}$$

$$K_{eq} = K_{sp} =$$

The solubility product constant,	, is the	of the	in a
solution raised t	o the power of the	coefficients in the e	quilibrium.
water molecules	added solid salt	salt "disappearing" into the body of water to form dilute solution	some remaining solid salt indicating saturation

Why aren't we using ICE TABLES?

Let's use an example with some mole ratios.

	$CD_{2 (s)}$	=	C ²⁺ (aq)	+	D- _(aq)
Initial					
(Where the stress					
is introduced)					
Change					
(How the system					
responds to the					
stress)					
Equilibrium					
(New equil'm					
concentrations)					

Ionization Equation Extra Practice:

- Represents the salt breaking apart into **ions**

- If the salt were CaCl₂

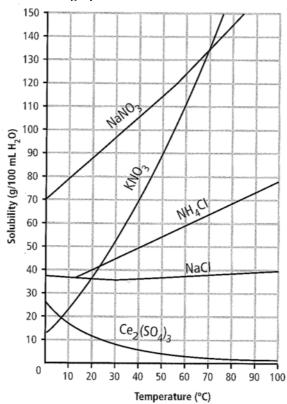
$$\circ$$
 CaCl₂ \rightarrow ___ Ca²⁺ + ___ Cl⁻

- Mole ratios represent the relative amounts of ions in solution

NaCl
$$_{(aq)}$$
 \rightarrow Na $^{+}$ $_{(aq)}$ + Cl $^{-}$ $_{(aq)}$

1.0M

$$CaCl_{2 (aq)}$$
 \rightarrow $Ca^{2+}_{(aq)}$ + $2 Cl_{(aq)}$


1.0M

Practice:

- 1. 0.25M KOH 5. 0.60M Pb(IO₃)₂
- 2. 0.75M SrCl₂ 6. 0.011M Mg(OH)₂
- 3. $0.20M NH_4NO_3$ 7. $0.45M BaCO_3$
- 4. $0.45 \text{M Ag}_2 \text{CrO}_4$ 8. $0.50 \text{M (NH}_4)_2 \text{SO}_3$

Solubility Curves

Consider the graph below:

- a) At 10°C, which salt has the highest solubility?
- b) At 10°C, which salt has the lowest solubility?
- c) At 90°C, which salt has the highest solubility?
- d) At 90°C, which salt has the lowest solubility?
- e) If you put 40 g of NH₄Cl in 100 mL of water at 90°C, will you be able to form a saturated solution?
- f) Approximately how many more grams of NH₄Cl could you add until it is saturated?
- g) If you put 60 g of KNO3 into 100 mL of water at 20°C and gradually heat the solution, what will you observe?
- h) If you dissolve 100 g of both NaNO₃ and KNO₃ in 100 mL of water at 90°C and then cool the mixture to 10°C , which salt will form crystals first?
- i) $Ce_2(SO_4)_3$ is an unusual substance as it does not follow the usual trend. What is unusual about $Ce_2(SO_4)_3$?

MOLE RATIO WILL BE VERY IMPORTANT IN THIS UNIT!!

We need to write out the IONIZATION/DISSOCIATION equation to figure out the ratio.

Solubility = "s"

$BaCO_{3 (s)} \leftrightharpoons ___Ba^{2+}_{(aq)} + ___CO_{3^{2-}_{(aq)}}$	$Fe(OH)_{2 (s)} \leftrightharpoons \underline{\qquad} Fe^{2+}_{(aq)} + \underline{\qquad} OH^{-}_{(aq)}$
Ratio of ions:	Ratio of ions:
$K_{sp} =$	$K_{sp} =$
Solubility =	Solubility =
$Fe(OH)_{3 (s)} \leftrightharpoons \underline{\qquad} Fe^{3+}_{(aq)} + \underline{\qquad} OH^{-}_{(aq)}$	$Sr_3(PO_4)_{2(s)} \leftrightharpoons ___Sr^{2+}_{(aq)} + ___PO_4^{3-}_{(aq)}$
Ratio of ions:	Ratio of ions:
$K_{sp} =$	$K_{sp} = 1.0 \times 10^{-31}$
Solubility =	Solubility =

Solubility (M) \rightarrow K_{sp}

 (1) The molar solubility of CaSO₄ is 8.4 x 10 ⁻³ M at a particular temperature. Calculate its K_{sp}. What is the equation representing the equilibrium?
\bullet
(2) The solubility of lead (II) chloride is 4.4 g/L. Calculate its $K_{\rm sp}$.
(3) A student prepares a saturated solution by dissolving 5.5 x 10 $^{-5}$ mol of Al(OH) $_3$ in 500. mL of solution Calculate the K_{sp} of Al(OH) $_3$.
(4) A student evaporated 150. mL of a saturated solution of magnesium phosphate. If 0.16g of solute remains, calculate the K_{sp} .
(5) Calculate the K_{sp} of silver oxalate if the solubility is 0.033 g/L.
(6) A compound has a solubility of 7.1 x 10^{-5} M at 25° C. According to its K_{sp} , the compound is: A. CuS B. AgBr C. CaCO ₃ D. CaSO ₄

$K_{sp} \rightarrow Solubilit$	y ((\mathbf{M})
--------------------------------	-----	----------------

(1) Calculate the molar solubility of iron (II) hydroxide from its K_{sp} .

(2) Calculate the molar solubility of iron (III) hydroxide from its K_{sp}.

(3) Which of the following substances has the lowest solubility?

A. BaS

B. CuS

C. FeS

D. ZnS

(4) How many moles of dissolved solute are present in 100.0mL of a saturated SrCO $_3$ solution? A. 5.6×10^{-11} mol B. 2.4×10^{-6} mol C. 2.4×10^{-5} mol D. 2.4×10^{-4} mol

Worksheet 3.2

Hebden Workbook Pg. 95 #42 - 55