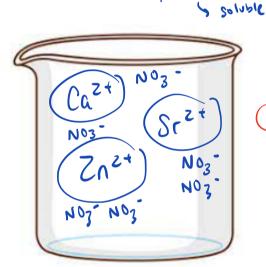
Solubility Equilibrium II

II.5-6
pg.88-95

Name: Date: Block:

- 1. Forming a Precipitate
- 2. Solubility Product Constant (One Source of Ions)


Forming a Precipitate

Example:

A solution may contain the ions **Ca²⁺**, **Sr²⁺ and Zn²⁺**. How would you precipitate the ions out of solution individually? Describe your answer using a flow chart.

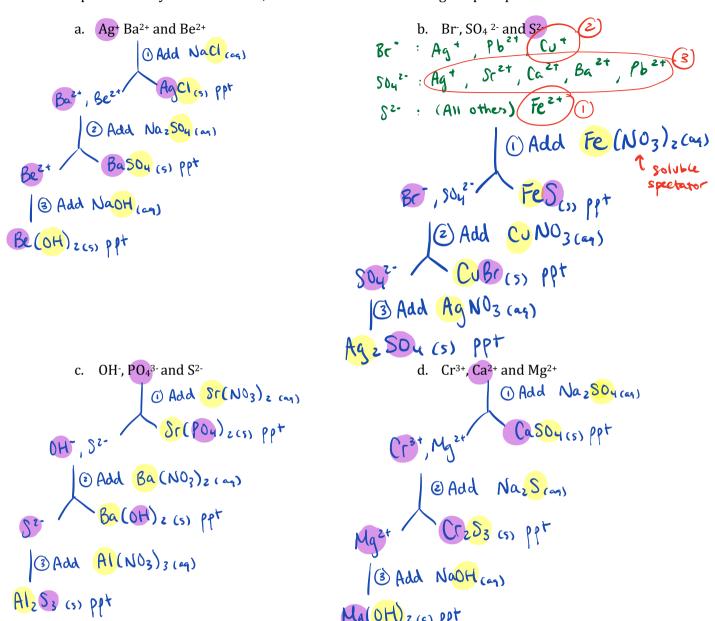
• All are cations - therefore an addition of an <u>anon</u> will precipitate out these cations.

• There are also **Spectator** ions in the solution to help balance out the charge.

• What can precipitate out Ca^{2+} ? SO_4^2 , OH^2 , PO_4^3 , CO_3^2 , SO_3^2

• What can precipitate out Sr²⁺?

Soy²⁻, Poy³⁻, Coy²⁻, Soy²⁻


• What can precipitate out Zn^{2+} ? S^{2-} OH - $PO4^{3-}$ $CO3^{2-}$ SO_3^{2-}

• What needs to be added first?

As a flow chart:

Practice:

1. For each of the following solutions, describe a process to individually remove each ion. Be sure to list the compounds that you add in order, and the method of removing the precipitate.

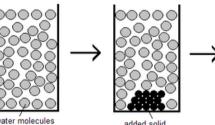
Alz S3 (5) ppt

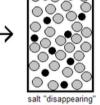
Solubility Product Constant K_{sp} (One Source of Ions)

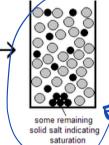
In a **saturated** solution, **equilibrium** is established between the dissolving and recrystallization of a salt.

recrystall: zation

AB (s)
$$\Rightarrow$$
 A+ (aq) + B- (aq)


in Ksp expression


 $K_{eq} = K_{sp} = P$
 E


ionic Compound (low solubility)

The solubility product constant, Ksp, is the ratio of the ion concertations in a solution raised to the power of the coefficients in the equilibrium.

@ equilibrium

Point of Saturation when a ppt

Why aren't we using ICE TABLES?

undersaturated

water to form dilute

Let's use an example with some mole ratios.

	$CD_{2 (s)}$	\Rightarrow	C ²⁺ (aq)	+	D- (aq)
Initial					
(Where the stress					
is introduced)					
Change					
(How the system					
responds to the					
stress)					
Equilibrium					
(New equil'm					
concentrations)					

Tonization Equation Extra Practice:

- Represents the salt breaking apart into **ions**

$$\circ \quad \text{NaCl} \rightarrow \underline{\quad } \text{Na}^{+} + \underline{\quad } \text{Cl}^{-}$$

If the salt were CaCl₂

$$\circ \quad \operatorname{CaCl}_2 \to \underline{\hspace{1cm}} \quad \operatorname{Ca}^{2+} + \underline{\hspace{1cm}} \quad \operatorname{Cl}^{-}$$

Mole ratios represent the relative amounts of ions in solution

NaCl (aq)	\rightarrow	$Na^+_{(aq)}$	+	Cl- (aq)
1.0M		1.0M		I. DM
CaCl _{2 (aq)}	→	Ca ²⁺ (aq)	+	2Cl- (aq)
1.0M		1.0M		2.04
				(12)

Practice:

3.
$$0.20M NH_4NO_3$$

$$Ag_{2}CrO_{4} \rightarrow 2Ag^{+} + CrO_{4}^{2}$$

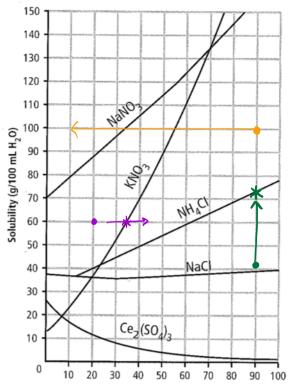
$$0.90M \quad 0.45M$$

5.
$$0.60M \text{ Pb}(IO_3)_2$$

Pb $(IO_3)_2 \rightarrow Pb^{**} + 2 lo_3$
0.60M 1.2M

6.
$$0.011M Mg(OH)_2$$
 $M_3(OH)_2 \rightarrow M_3^{2+} + 2OH^2$
 $0.011M = 0.022M$

7.
$$0.45 \text{M BaCO}_3$$
 $BaCO_3 \rightarrow Ba^{24} + CO_3^{22}$
 0.45M
 0.45M


8.
$$0.50M (NH_4)_2SO_3$$

$$(NH_{4})_{2}SO_{3} \rightarrow 2NH_{4}^{\dagger} + SO_{3}^{2}$$

 $(NH_{4})_{2}SO_{3} \rightarrow 2NH_{4}^{\dagger} + SO_{3}^{2}$

Solubility Curves

Above line = solid (oversaturated) At line = saturation point (equilibrium)
Below line = aqueous ions (undersaturated)

Consider the graph below:

a) At 10°C, which salt has the highest solubility?

Can dissolve the highest

b) At 10°C, which salt has the lowest solubility?

At 90°C, which salt has the highest solubility?

d) At 90°C, which salt has the lowest solubility?

If you put 40 g of NH₄Cl in 100 mL of water at 90°C, will you be able to form a saturated solution?

Approximately how many more grams of NH₄Cl could you add until it is saturated?

If you put 60 g of KNO₃ into 100 mL of water at 20°C and gradually heat the solution, what will you observe?

h) If you dissolve 100 g of both NaNO₃ and KNO₃ in 100 mL of water at 90°C and then cool the mixture to 10°C, which salt will form crystals first?

KNO2

Ce₂(SO₄)₃ is an unusual substance as it does not follow the usual trend. What is unusual about Ce₂(SO₄)₃?

Temperature (°C)

MOLE RATIO WILL BE VERY IMPORTANT IN THIS UNIT!!

We need to write out the IONIZATION/DISSOCIATION equation to figure out the ratio.

Solubility = "s" = the [] of ions in a saturated solution

$$BaCO_{3 (s)} = \frac{1}{S} Ba^{2+} (aq) + \frac{1}{S} CO_{3}^{2-} (aq)$$

Ratio of ions:

$$K_{sp} = [\beta a^{24}][CO_3^{2-}] \qquad \text{from table}$$

$$= (s)(s) = S^2 = \lambda.6 \times 10^{-9}$$

Solubility =
$$\int 2.6 \times 10^{-9}$$

- [] = $5.1 \times 10^{-5} M = [6a^{24}]$
= $[03^{2-}]$

$$Fe(OH)_{3(s)} = \frac{1}{5} Fe^{3+}_{(aq)} + \frac{3}{5} OH_{(aq)}$$

Ratio of ions: | 3

$$K_{sp} = [Fe^{3t}][OH^{-3}]^{3}$$

= $(5)(35)^{3} = (5)(35)(35)(35)(35)$
= $275^{4} = 2.6 \times 10^{-39}$

Solubility =
$$4 \frac{2.6 \times (0^{-39})}{27} = 9.9 \times 10^{-11} \text{M}$$

$$Fe(OH)_{2 (s)} \leftrightharpoons Fe^{2+}_{(aq)} + 2OH^{-}_{(aq)}$$

Ratio of ions: 1:7

$$K_{sp} = \left(Fe^{z+} \right) \left[OH^{-} \right]^{2}$$

$$= \left(S \right) \left(2S \right)^{2} = \left(S \right) \left(2S \right) \left(2S \right)$$

$$= \left(4S^{3} = 4.9 \times 10^{-7} \right)^{2}$$

$$= \left(4.9 \times 10^{-17} = 2.3 \times 10^{-6} M \right)^{2}$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(4.9 \times 10^{-17} = 2.3 \times 10^{-6} M \right)^{2}$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right)$$

$$= \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right)^{2} = \left(5 \right) \left(2S \right)^{2} = \left(5 \right)^{2} =$$

$$Sr_3(PO_4)_{2(s)} = \frac{3}{(3s)} Sr^{2+}_{(aq)} + \frac{1}{(2s)} PO_4^{3-}_{(aq)}$$

Ratio of ions: 2 + 2

$$K_{sp} = 1.0 \times 10^{-31} = [Sr^{24}]^{3} (PO4^{3})^{2}$$

$$= (35)^{3} (25)^{2} = 1085^{5}$$

Solubility = 4
$$\frac{2.6 \times (0^{-39})}{27} = 9.9 \times 10^{-11} \text{M}$$
 Solubility = $\frac{1.0 \times (0^{-31})}{108} = 2.5 \times 10^{-7} \text{M}$

Solubility (M) \rightarrow K_{sp}

- (1) The molar solubility of CaSO₄ is 8.4 x 10 $^{-3}$ M at a particular temperature. Calculate its $(K_{\rm sp})$.
 - What is the equation representing the equilibrium?

Casou (5)
$$\rightleftharpoons$$
 Casou + Sou (2)

• Write the K_{sp} expression and substitute the concentration of ions into the K_{sp} expression

$$K_{SP} = [(a^{21})[(504^{2})] = (5)(5) = (8.4 \times 10^{-3})^{2} = [7.1 \times 10^{-5}]$$

* K_{SP} has no units!

- (2) The solubility of lead (II) chloride is 4.4 g/L. Calculate it (K_{sp}) .

 [PbCl₂] = $\frac{4.45}{1.45}$ x $\frac{100}{278.29}$ = 0.016M = S PbCl₂ (3) = $\frac{100}{25}$ (a) +2Cl₂ (3) Ksy = [Pb2+][C1-]2 = (5)(25)2 = 453 = 4(0.016)3 = 1.6 × 10-5
- (3) A student prepares a saturated solution by dissolving 5.5 x 10⁻⁵ mol of Al(OH)₃ in 500. mL of solution.

Calculate the
$$(K_{sp})$$
 of Al(OH)3. $\frac{5}{5.5 \times 10^{-5}}$ mol $\frac{5.5 \times 10^{-5}}{0.5000L} = 1.1 \times 10^{-4}$ Al $(OH)_{3(s)} \rightleftharpoons Al_{(eq)}^{3(s)} = A$

(4) A student evaporated 150. mL of a saturated solution of magnesium phosphate. If 0.16g of solute

(4) A student evaporated 150. mL of a saturated solution of magnesium phosphate. If 0.16g of solute remains, calculate the
$$K_{sp}$$
.

[M33 (PO4)2] = $\frac{0.169}{0.150L}$ $\frac{100}{2629}$ = 0.00406 M = $\frac{3}{2}$ $\frac{3}{2}$

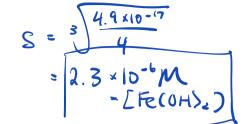
- Ksp = [Mg2+]3[poy5-]2 = (3s)3(2s)2 = 108 5 = 108 (0.0040b)5 = [1.2 × 10-10]
- (5) Calculate the (K_{sp}) of silver oxalate if the solubility is 0.033 g/L. $Ag_{2}C_{2}O_{4(5)} \rightleftharpoons 2Ag_{5(5)} + C_{2}O_{4(5)}$ [Ag 2 C204] = 0.0339 x 1 mol 2 1.1 x 10-4 M = 5

(6) A compound has a solubility of 7.1×10^{-5} M at 25° C. According to its K_{sp} , the compound is: C. GaCO₃ A. CuS B. AgBr D. CaSO₄ AII 1:1 ratio

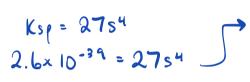
$$Ksp = S^{2}$$

= $(7.1 \times 10^{-5})^{2} = 5.0 \times 10^{-9}$
Ly Matches Ksp of $CaCo_{3}$

$K_{sp} \rightarrow Solubility (M)$


(1) Calculate the molar solubility of iron (II) hydroxide from its K_{sp}.

$$Ksp = [Fe^{2t}][OH^{-}]^{2} = (s)(2s)^{2} = 4s^{3}$$


$$4.9 \times 10^{-17} = 4s^{3}$$

$$2.3 \times 10^{-6} M$$

(2) Calculate the molar solubility of iron (III) hydroxide from its K_{sp} .

Fe (OH) 3 (3)
$$\rightleftharpoons$$
 Fe (aq) + 3 OH (aq) Ksp = 2.6 × 10 -39

(3) Which of the following substances has the lowest solubility? Smalles + RaS RaS RaS C. FeS D. ZnS

(4) How many moles of dissolved solute are present in 100.0mL of a saturated SrCO₃ solution?

ow many moles of dissolved solute are present in 100.0mL of a saturated SrCO₃ solution?

A.
$$5.6 \times 10^{-11} \text{ mol}$$

B. $2.4 \times 10^{-6} \text{ mol}$

C. $2.4 \times 10^{-5} \text{ mol}$

D. $2.4 \times 10^{-4} \text{ mol}$

Fig. 2.4 × 10-4 mol

Solution?

$$Ksp = \sqrt{s^2} = \sqrt{5.6 \times 10^{-10}}$$

 $S = 2.4 \times 10^{-5} \text{ M}$

Worksheet 3.2

(Hebden Workbook Pg. 95 #42 - 55) extra

$$\rightarrow g \cdot L^{-1} = \frac{g}{L}$$