Chemistry 12 Solubility Equilibrium III

Name: Date: **Block:**

- 1. One Source vs. Two Source Solubility
- Problems
- Challenging Solubility Problems
 Prediction of Forming a Precipitate

One Source	Two Source
Both ions come from the same salt (source)	Both ions come from a different salt (source)
$PbI_{2(s)} \rightleftharpoons Pb^{2+}(aq) + 2 I^{-}(aq)$	$Pb(NO_3)_{2(s)} \Leftrightarrow Pb^{2+}(aq) + 2 NO_{3}(aq) \qquad KI_{(s)} \Leftrightarrow K^{+}(aq) + I^{-}(aq)$
	$PbI_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2 I^{-}_{(aq)}$
Ion concentrations are related	Related through K
through mole ratio	• Related through K_{sp} • Even Find the [1] if [Dh24] = 4 E ve 10.3 M
✤ 1:1 ratio =	• EX. Find the $[1]$ if $[r b^{2/3}] = 4.5 \times 10^{-9}$ M.
✤ 1:2 ratio =	
✤ 1:3 ratio =	
 2.3 ratio - 	

Challenging Solubility Problems

1. A solution has a concentration of calcium ions equal to 2.5×10^{-2} M. What is the maximum concentration of sulphate ions allowed to be added without causing <u>precipitation</u>?

2. Determine the maximum $[Na_2CO_3]$ that can exist in 1.0L of 0.0010M Ba $(NO_3)_2$ without forming a <u>precipitate</u>.

A. 2.6 x10⁻¹² M B. 2.6 x10⁻⁹ M C. 2.6 x10⁻⁶ M D. 5.1 x10⁻⁵ M

3. What is the maximum $[Sr^{2+}]$ that can exist in a solution of 0.10 M Na₂SO₄?

A. 3. 4 x10⁻⁷ M B. 3. 4 x 10⁻⁶ M C. 1. 7 x 10⁻⁶ M D. 5.8 x 10⁻⁴ M 4. When 100.0 mL of 4.0 x 10^{-2} M CaCl₂ is added to 150.0 mL of 2.9 x 10^{-2} M NaOH, <u>a precipitate just starts to form.</u> What is the K_{sp} of this precipitate?

- Write a (balanced) double replacement reaction.
- What is the possible precipitate? Write the K_{sp} expression.
- Calculate the diluted concentrations of each ion.

• Calculate the K_{sp} value.

5. Up to 15.0g of BaCl₂ can be dissolved in 2.5L of $Al_2(SO_4)_3$ without a precipitate being formed. Find $[Al_2(SO_4)_3]$.

- Write the double replacement reaction. (What is the solute? What is the solvent?)
- What is the possible precipitate that could be formed? Write the K_{sp} expression and determine its value from the data booklet.
- Looking at the K_{sp} expression, is there an ion concentration value that could be determined?

Prediction of Forming a Precipitate

When **two different solutions** are mixed, we can predict whether a precipitate will form. The K_{sp} value represents the maximum product of the ion concentrations in a saturated solution.

If an equilibrium is not present in solution, then we calculate a trial ion product (TIP) – (also called a trial Ksp value or reaction quotient, Q)

If Trial K_{sp} > Actual K_{sp} – a precipitate forms. If Trial K_{sp} < Actual K_{sp} – no precipitate forms. If Trial K_{sp} = Actual K_{sp} – the solution is saturated.

$$X_2Y_{(s)} \rightleftharpoons 2X^+ + Y^2$$

K_{sp} =

Example.

- (1) Will a precipitate form when 23 mL of 0.020 M Na₂CO₃ is added to 12 mL of 0.010 M MgCl₂?
 - Write a balanced equation. What is the precipitate that will potentially form? (Use the solubility table)
 - What are the concentrations of each of these ions?

• Calculate the value of TIP (Trial K_{sp})

• Compare the TIP (Trial K_{sp}) with the real K_{sp}. Will a precipitate form?

(2) Will a precipitate form when 8.5 mL of 6.3×10^{-2} M lead (II) nitrate is added to 1.0 L of 1.2×10^{-3} M sodium iodate?

(3) Will a precipitate form when 1.5 mL of 4.5×10^{-3} M ammonium bromate is added to 120.5 mL of 2.5×10^{-3} M silver nitrate?

Hebden Workbook Pg. 98 #56-69 Worksheet 3.3 #8-12