Station 1:
It is found that 1.892×10^{-13} grams of the compound cadmium (II) sulphide will dissolve in 350.0 mL of water to form a saturated solution. Using this data, calculate the value for the $\mathrm{K}_{\text {sp }}$ of CdS

$$
\begin{aligned}
& \operatorname{CdS} \underset{S}{ } C_{S} d^{2+}+S_{S}^{2-} \quad \text { (one source) } \\
& S=\frac{1.892 \times 10^{-13} \mathrm{~g}}{0.3500 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{144.5 \mathrm{~g}}=3.741 \times 10^{-15} \mathrm{~m} \\
& K_{s \rho}=\left[C d^{2+}\right]\left[S^{2-}\right]=S^{2} \\
& =\left(3.741 \times 10^{-15}\right)^{2} \quad=1.399 \times 10^{-29}
\end{aligned}
$$

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 2:
Up to 15.0 g of barium chloride can be dissolved in $2.5 \mathrm{~L}^{\text {of }} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution without forming a precipitate. Find the mass of aluminum in the solution.

$$
\begin{aligned}
& \frac{15.0 \mathrm{~g}}{2.5 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{208.3 \mathrm{~g}}=0.0288 \mathrm{M} \\
& =\left[\mathrm{Ba}^{2+}\right] \\
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \stackrel{\mathrm{r}}{ } \mathrm{Al}^{3+}+3 \mathrm{SO}_{4}{ }^{2-} \\
& 2.6 \times 10^{-9} \mathrm{M} \quad 3.8 \times 10^{-9} \mathrm{M} \\
& v_{\frac{2}{3}} \\
& \text { ?. } \mathrm{Al}^{3+}=2.5 \mathrm{~L} \times \frac{2.6 \times 10^{-9} \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{27.0 \mathrm{~g}}{1 \mathrm{~mol}}=1.7 \times 10^{-7} \mathrm{~g}
\end{aligned}
$$

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 3:
Calculate the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ that must be added to 2.50 L of $0.00085 \mathrm{M} \mathrm{MgCl}_{2}$ in order to just start precipitation

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{CO}_{3} \\
{[\mathrm{MgCl}]_{2} \mathrm{MgCl}_{2}} \\
=0.00085
\end{gathered}
$$

How did you do?

"I don't get it yet,, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 4:
A sample of a saturated solution of MgF_{2} was evaporated and the following data table was constructed:

Mass of empty evaporating dish: 78.5418 g
Mass of evaporating dish and MgF_{2} residue after evaporation: 78.5434 g
Volume of saturated $\mathrm{MgF}_{2}: 100.00 \mathrm{~mL}=0.10000 \mathrm{~L}$
Temperature: $25.0^{\circ} \mathrm{C}$
Use this data to calculate the value of $\mathrm{K}_{\text {sp }}$ for MgF_{2} at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& M g F_{2} \text { residue }=78.5434 \mathrm{~g}-78.5418 \mathrm{~g}=0.0016 \mathrm{~g} \\
& \\
& \frac{0.0016 \mathrm{~g}}{0.10000 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{62.3 \mathrm{~g}}=2.6 \times 10^{-4} \mathrm{M}=\mathrm{s}
\end{aligned}
$$

$$
M g F_{2} \gtrless \underset{(S)}{M g^{2+}}+2 F^{-}
$$

$$
K_{s p}=4 s^{3}=4\left(2.6 \times 10^{-4}\right)^{3}=6.8 \times 10^{-11}
$$

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 5:
What is the maximum mass of copper (II) chloride you can add 100.0L of a 0.025 M solution of sodium iodate without causing precipitation?

$$
\begin{aligned}
& \mathrm{CuCl}_{2}+\underset{\left[\mathrm{NaIO}_{3}\right]=}{2 \mathrm{NaIO}_{3}} \geqslant \mathrm{CH}_{2}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{ss})+2 \mathrm{NaCl} \\
& {\left[\mathrm{IO}_{3}{ }^{-}\right]=0.025 \mathrm{M} \longrightarrow \quad \mathrm{~K}_{s p}=\left[\mathrm{Cu}^{2+}\right]\left[10_{3}{ }^{-}\right]^{2}=6.9 \times 10^{-8}} \\
& {\left[\mathrm{Cu}^{2+}\right]=\frac{6.9 \times 10^{-8}}{(0.025)^{2}}=1.1 \times 10^{-4} \mathrm{M}} \\
& \mathrm{CuCl}_{2} \geq \mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-} \\
& 1.1 \times 10^{-4} \sim^{1.1 \times 10^{-4}} \\
& ? \mathrm{~g} \mathrm{cu}^{2+}=100.0 \mathrm{~L} \times \frac{1.1 \times 10^{-4} \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{134.5 \mathrm{~g}}{1 \mathrm{~mol}} \\
& =1.48 \mathrm{~g}
\end{aligned}
$$

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 6:
What is the maximum volume of 0.0350 M sodium sulphate solution required to obtain a saturated solution of strontium sulphate with 1.25 g of strontium nitrate?

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{4}+\underset{\underline{\mathrm{Sc}}\left(\mathrm{NO}_{3}\right)_{2} \rightleftharpoons 2 \mathrm{NaNO}_{3}+\underset{\mathrm{SrSO}}{4}(\mathrm{~s})}{ } \\
& {\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]=\left[\mathrm{SO}_{4}^{2-}\right]} \\
& =0.0350 \mathrm{M} \\
& K_{5 p}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]= \\
& 3.4 \times 10^{-7} \\
& \begin{array}{l}
\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \approx \mathrm{Sc}^{2 t}+2 \mathrm{NO}_{3}^{-} . \\
9.7 \times 10^{-6}
\end{array} \\
& {\left[\mathrm{Sr}^{2+}\right]=\frac{3.4 \times 10^{-7}}{0.0350 \mathrm{~m}}} \\
& =9.7 \times 10^{-6} \mathrm{M}
\end{aligned}
$$

How did you do?

"I don't get it yet," but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 7:
Calculate the $\left[\mathrm{Ag}^{+}\right]$required to just start precipitation of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in a 0.0030 M solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{Ag}^{+}
\end{aligned} \begin{aligned}
& \begin{array}{l}
\left.\left.\mathrm{K} \mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}\right]= \\
{\left[\mathrm{CO}_{3}^{2-}\right]}
\end{array} \\
& =0.0030 \mathrm{M} \\
& {\left[\mathrm{Ag}^{+}\right]=\sqrt{\frac{8.5 \times 10^{-12}}{2}\left[\mathrm{CO}_{3}^{2-}\right]}=8.5 \times 10^{-12}}
\end{aligned}
$$

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

Station 8:
If 250.0 mL of $3.40 \times 10^{-4} \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with 350.0 mL of $3.12 \times 10^{-4} \mathrm{M} \mathrm{KIO}{ }_{3}$, will a precipitate form?

$$
\begin{aligned}
& \underline{\underline{\mathrm{Cu}}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KIO}} \\
& \rightleftharpoons\{\underbrace{\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2(5)}}+\mathrm{KNO}_{3} \\
& C_{2}=\frac{\left(3.12 \times 10^{-4}\right)(350.0)}{(600.0)} \\
& =1.82 \times 10^{-4} \\
& =1.42 \times 10^{-4} \\
& =\left[\mathrm{Cu}^{2+}\right] \\
& =\left[\mathrm{IO}_{3}-\right] \\
& \text { Trial } K_{s p}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{IO}_{3}\right]^{2} \\
& =\left(1.42 \times 10^{-4}\right)\left(1.82 \times 10^{-4}\right)^{2} \\
& \text { Actual isp } \\
& =6.9 \times 10^{-8} \\
& =4.70 \times 10^{-12}
\end{aligned}
$$

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."

