Station 1:

It is found that 1.892×10^{-13} grams of the compound cadmium (II) sulphide will dissolve in 350.0 mL of water to form a saturated solution. Using this data, calculate the value for the K_{sp} of CdS

$$CdS \rightleftharpoons Cd^{2+} + S^{2-} \qquad (One source)$$

$$S = \frac{1.892 \times 10^{-13}}{0.3500L} S \times \frac{1001}{144.59} = 3.741 \times 10^{-15} M$$

$$Ksp = [Cd^{2+}][S^{2-}] = S^{2} = \frac{1.399 \times 10^{-29}}{1.399 \times 10^{-29}}$$

"I don't get it yet,	"I'm starting to get	"I get it."	"I really get it and
but I'm trying."	it."		can teach others
			how to do it."

Station 2:

Up to 15.0g of barium chloride can be dissolved in 2.5L of $Al_2(SO_4)_3$ solution without forming a precipitate. Find the mass of aluminum in the solution.

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

Station 3:

Calculate the mass of Na₂CO₃ that must be added to 2.50 L of 0.00085 M MgCl₂ in order to just start precipitation

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

Station 4:

A sample of a saturated solution of MgF_2 was evaporated and the following data table was constructed:

Mass of empty evaporating dish: 78.5418 gMass of evaporating dish and MgF₂ residue after evaporation: 78.5434 gVolume of saturated MgF₂: 100.00 mL = 0.10000 LTemperature: 25.0 °C

Use this data to calculate the value of K_{sp} for MgF₂ at 25°C

$$MgF_{2} \text{ residue} = 78.5434g - 78.5418g = 0.0016g$$

$$\frac{0.0016g}{0.10000L} \times \frac{1001}{62.3g} = 2.6 \times 10^{-4} M = (3)$$

$$MgF_{2} \ge Mg^{2+} + 2F^{-}$$

$$S = (2.6 \times 10^{-4})^{3} = (6.8 \times 10^{-11})^{3}$$

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

Station 5:

What is the maximum mass of copper (II) chloride you can add 100.0L of a 0.025M solution of sodium iodate without causing precipitation?

J CJ ²⁴	t1	100.0L ×	1.1×10-4 mol	x 134.5g 1 Mol
		= [[,489		

How d	l <mark>id yo</mark>	u do?
-------	----------------------	-------

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

Station 6:

What is the maximum volume of 0.0350M sodium sulphate solution required to obtain a saturated solution of strontium sulphate with 1.25g of strontium nitrate?

 $Na_{2} \underbrace{So}_{4} + \underbrace{Sc}(No_{3})_{2} \rightleftharpoons Z NaNO_{3} + \underbrace{Sc}So_{4}(s)$ $[Na_{2} So_{4}] = [So_{4}^{2-1}]_{= 0.0350M} \times Sc^{2t} + 2NO_{3}^{-1} \qquad Sc^{2t} - [Sc^{2t}] [So_{4}^{2t}] = 3.4 \times 10^{-7}$ $Sc(NO_{3})_{2} \rightleftharpoons Sc^{2t} + 2NO_{3}^{-1} \qquad [Sc^{2t}] = \frac{3.4 \times 10^{-7}}{0.0350M} = 9.7 \times 10^{-6} M$

$$7. L_{SrS0y} = \frac{1.25g \times \frac{1001}{211.6g} \times \frac{1}{9.7 \times 10^{-6} \text{ mol}}}{\frac{9.7 \times 10^{-6} \text{ mol}}{10^{-6} \text{ mol}}} = \frac{609 \text{ L}}{1000}$$

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

Station 7:

Calculate the [Ag⁺] required to just start precipitation of Ag_2CO_3 in a 0.0030 M solution of $(NH_4)_2CO_3$

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

Station 8:

If 250.0 mL of 3.40×10^{-4} M Cu(NO₃)₂ is mixed with 350.0 mL of 3.12×10^{-4} M KIO₃, will a precipitate form?

$Cu(NO_3)_2 + KIO_3$	11	$\left(\underbrace{\underline{C}}_{U}\left(\underline{IO_{3}}\right)_{2(n)} + KNO_{3}\right)$
$C_{2} = \frac{(3.40 \times 10^{-4})(250.0)}{(10000)}$	~	$C_{2} = (3.12 \times 10^{-4})(350.0)$
$ (600.0) = [.42 \times 10^{-4}] = [Cu^{24}] $		= [.82 × 10-4 = []03 -]

. No ppt will form

How die	d you	do?
---------	-------	-----

but I'm trying." it." I goota how to do it."		"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	--	--	------------------------------	-------------	--