Station 1:

It is found that 1.892 x 10^{-13} grams of the compound cadmium (II) sulphide will dissolve in 350.0 mL of water to form a saturated solution. Using this data, calculate the value for the K_{sp} of CdS

Station 2:

Up to 15.0g of barium chloride can be dissolved in 2.5L of $Al_2(SO_4)_3$ solution without forming a precipitate. Find the mass of aluminum in the solution.

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
			now to ao it.

Station 3:

Calculate the mass of Na_2CO_3 that must be added to 2.50 L of $0.00085\ M\ MgCl_2$ in order to just start precipitation

How did you do?

"I don't get it yet, but I'm trying." "I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
---	-------------	--

Station 4:

A sample of a saturated solution of MgF₂ was evaporated and the following data table was constructed:

Mass of empty evaporating dish: 78.5418~g Mass of evaporating dish and MgF_2 residue after evaporation: 78.5434~g Volume of saturated MgF_2 : 100.00~mL

Temperature: 25.0 °C

Use this data to calculate the value of K_{sp} for $MgF_2\,at\,25^{\circ}C$

"I don't get it yet, "I' but I'm trying."	'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	----------------------------	-------------	--

Station 5:

What is the maximum mass of copper (II) chloride you can add 100.0L of a 0.025M solution of sodium iodate without causing precipitation?

How did you do?

- 1				
	"I don't get it yet,	"I'm starting to get		"I really get it and
	0 ,	inistanting to get	"I get it."	can teach others
	but I'm trying."	Ιζ.	_	how to do it."

Station 6:

What is the maximum volume of 0.0350 M sodium sulphate solution required to obtain a saturated solution of strontium sulphate with 1.25 g of strontium nitrate?

"I don't get it yet, but I'm trying." "I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
---	-------------	--

Station 7:

Calculate the [Ag+] required to just start precipitation of Ag2CO3 in a 0.0030 M solution of (NH4)2CO3 $\,$

Station 8:

If 250.0 mL of 3.40 x 10^{-4} M Cu(NO₃)₂ is mixed with 350.0 mL of 3.12 x 10^{-4} M KIO₃, will a precipitate form?

How did you do?

"I don't get it yet, but I'm trying."	"I'm starting to get it."	"I get it."	"I really get it and can teach others how to do it."
--	------------------------------	-------------	--

"I don't get it yet,	"I'm starting to get	"I get it."	"I really get it and can teach others
but I'm trying."	it."	1 get it.	how to do it."