Chemistry 12 Solubility Equilibrium IV

Name: Date: Block:

1. Common Ion Effect

Common Ion Effect

In a saturated solution, equilibrium is established between the **dissolving (increase solubility)** and **recrystallization (decrease solubility)** of a salt.

$$AgCl_{(s)} \xrightarrow{\checkmark} Ag^+_{(aq)} + Cl^-_{(aq)}$$

K_{sp} =

- \Rightarrow Which of the following will shift this equilibrium? If it shifts, in which direction will it shift?
 - ✤ Add more AgCl_(s)?
 - ✤ Remove AgCl_(s)? (not really an option since there is no AgCl_(s) to remove)
 - $Add Ag_{(aq)}^{+}?$

 - ✤ Add Cl⁻(aq) ?

INCREASE the Solubility of a Salt:

- Dissolve more of the solid (if it exists)
- Equilibrium will shift to the _____.
- Rate of dissolving Rate of recrystallization
- Can be accomplished by:
 - 0
 - 0

How do we REMOVE Ag + (aq) or Cl⁻ (aq)?

- To remove an ion from solution, we must find **another ion** to react with it.
 - ✤ To remove Ag+...
 - ✤ To remove Cl-...

Which of the following salts could be added to INCREASE the solubility of AgCl?

AgCl	$CaSO_4$	KNO3	ZnS	CaCl ₂	AgBr	$Mg(OH)_2$	NH_4CO_3
				2	0		

DECREASE the Solubility of a Salt:

- Equilibrium will shift to the _____.
- Cause more solid to form.
- Rate of dissolving Rate of recrystallization
- Can be accomplished by:
 - 0
 - 0

How do we ADD Ag $+_{(aq)}$ or Cl- $_{(aq)}$?

- Introducing another salt, which has an ion in common with the first salt, is called the "Common Ion Effect"
 - ✤ To add Ag⁺...
 - ✤ To add Cl⁻...

Which of the following salts could be added to DECREASE the solubility of AgCl?

Π_{1} Π_{2} Π_{1} Π_{2} Π_{1} Π_{2} Π_{1} Π_{2} Π_{1} Π_{2} Π_{1}	AgCl	CaSO ₄	KNO3	ZnS	$CaCl_2$	AgBr	$Mg(OH)_2$	NH_4CO_3
---	------	-------------------	------	-----	----------	------	------------	------------

1. Consider the following reaction:

$$Al_2(SO_4)_{3(s)} \rightleftharpoons 2 Al^{3+}_{(aq)} + 3 SO_4^{2-}_{(aq)}$$

If the following compounds were added,

- I. Na₂S
- II. $Al_2(SO_4)_3$
- III. NaNO₃
- $IV. \quad K_2SO_4$
- a) Solubility would increase:
 - A. I only
 - B. I & II
 - C. II & IV
 - D. III & IV
 - E. IV only

b) Solubility would decrease:

- A. I only
- B. I & II
- C. II & IV
- D. III & IV
- E. IV only

2. Consider a solution of NaBr.

- a. Write the solubility equilibrium reaction:
- b. Each of the following solutions is added to the solution of NaBr. State whether each will increase or decrease the solubility. Order the solutions in order of decreasing solubility.

	1.0 M NaCl	1.0 M AgNO ₃	1.0 M KNO ₃	1.0 M Na ₂ SO ₄	2.0 M AgNO ₃
Increase or					
decrease					
solubility?					

Increase solubility

Decrease solubility