1. Molarity
2. Dilutions

Molarity (review)

Practice 1.
What is the molar concentration of NaCl in a solution containing 5.12 g of NaCl in 250.0 mL of solution? (0.350 M NaCl)

Practice 2.

What mass of NaOH is contained in 3.50 L of 0.200 M NaOH ? (28.0 g NaOH)

Practice 3.

How many moles of AlCl_{3} are contained in 350.0 mL of $0.250 \mathrm{M} \mathrm{AlCl}_{3}$? ($0.0875 \mathrm{~mol} \mathrm{AlCl}_{3}$)

$\mathrm{n}=$ number of moles
V = volume
$c=\quad=$ concentration

The amount of the chemical (number of moles and mass) does not change - only the concentration.

$$
\begin{gathered}
\text { Therefore, } n_{1}=n_{2} \\
\text { Since } n_{1}=c_{1} \times V_{1} \text { and } n_{2}=c_{2} \times V_{2}
\end{gathered}
$$

Because....

Therefore, $c_{1} \times V_{1}=\mathbf{c}_{\mathbf{2}} \times V_{\mathbf{2}}$

Example 1:

If 200.0 mL of 0.500 M NaCl is added to 300.0 mL of water, what is the resulting $[\mathrm{NaCl}]$ in the mixture? (0.200 M NaCl)

Example 3:

What volume of 12.0 M NaOH is required in order to prepare 3.00 L of 0.750 M NaOH ? (0.188 L NaOH)

Example 4:

When 350.0 mL of $0.250 \mathrm{M} \mathrm{MgCl}_{2}$ is boiled down to a final volume of 275.0 mL , what is the molarity of the MgCl_{2} in the resulting solution? ($0.318 \mathrm{M} \mathrm{MgCl}_{2}$)

