1. Molarity Problems - Find the missing value.

b) HCl

$$
143.28 \mathrm{gHcl} \times \frac{143.28 \mathrm{~g}}{36.4 \mathrm{got}_{\mathrm{Hcl}}^{\mathrm{gHct}}} \times \frac{1 \mathrm{LHcl}}{4.25 \mathrm{mothcl}}=0.925 \mathrm{LHcl}
$$

c) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
150.0 mL

$$
\left.\begin{array}{rl}
150.0 \mathrm{mt}
\end{array} \frac{1 \mathrm{l}}{1000 \mathrm{~mL}} \times \frac{3.00 \mathrm{~mol}_{\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}^{1 \mathrm{~L}}}{} \times \frac{\left.331.22 \mathrm{~g} \mathrm{Pb(NO}_{3}\right)_{2}}{1 \mathrm{molpb}\left(\mathrm{NO}_{3}\right)_{2}}\right)
$$

2. Dilution Problems

$$
=149 \mathrm{~g} \mathrm{pb}\left(\mathrm{NO}_{3}\right)_{2}
$$

(a) $\overline{1} \overline{1} 0 . \overline{\mathrm{mL}}$ of $\overline{3} . \overline{0} 0 \mathrm{M}$ sulfuric acid has $\overline{2} \overline{5} . \overline{\mathrm{mL}} \mathrm{m}$ of water added to it. What is the resulting concentration of the solution? (2.44 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$)

$$
\begin{aligned}
& C_{1}=3.00 \mathrm{M} \\
& v_{1}=110.0 \mathrm{~mL} \\
& c_{2}=? \\
& v_{2}=110.0 \mathrm{~mL}+25.0 \mathrm{~mL}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1} v_{1}=c_{2} v_{2} \\
&(3.00 \mathrm{M})(110.0 \mathrm{~mL})=\left(c_{2}\right)(135.0 \mathrm{~mL}) \\
& c_{2}=\frac{(3.00 \mathrm{M})(110.0 \mathrm{~mL})}{(135.0 \mathrm{~mL})} \\
&=2.44 \mathrm{M}
\end{aligned}
$$

(b) How much water must be added to 50.0 mL sample of 18.0 M nitric acid to give a resulting concentration of 0.250 M ? $(3550 \mathrm{~mL} \mathrm{H} \mathrm{H}$ O $)$

$$
\begin{aligned}
& c_{1}=18.0 \mathrm{M} \\
& v_{1}=50.0 \mathrm{~mL} \\
& c_{2}=0.250 \mathrm{M} \\
& v_{2}=?
\end{aligned}
$$

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
&(18.0 \mathrm{M})(50.0 \mathrm{~mL})=(0.250 \mathrm{~m})\left(V_{2}\right) \\
& V_{2}=\frac{(18.0 \mathrm{M})(50.0 \mathrm{~mL})}{(0.250 \mathrm{M})} \\
&=3600 \mathrm{~mL}
\end{aligned}
$$

Water to be added: $3600 \mathrm{~mL}-50.0 \mathrm{~mL}=3550 \mathrm{~mL}$
(c) Barium nitrate is purchased as a 17.0 M concentration. Explain how you would prepare 500.0 mL of a 5.00 M solution. ($147 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$)

$$
\begin{aligned}
& C_{1}=17.0 \mathrm{M} \\
& v_{1}=? \\
& C_{2}=5.00 \mathrm{M} \\
& V_{2}=500.0 \mathrm{~mL}
\end{aligned}
$$

$$
\begin{gathered}
C_{1} v_{1}=C_{2} V_{2} \\
(17.0 \mathrm{~m})\left(v_{1}\right)=(5.00 \mathrm{~m})(500.0 \mathrm{~mL})
\end{gathered}
$$

$$
v_{1}=\frac{(5.00 \mathrm{M})(500.0 \mathrm{~mL}) \quad \text { step: Measure } 147 \mathrm{~mL}}{\text { op barium nitrate }}
$$

of bavim nitrate

$$
\text { Step } 2 \text { Add } 353 \mathrm{LL}
$$

Of water t make

$$
\text { a } 500.0 \mathrm{~mL}
$$

Solution
(d) If 25.0 mL of $\overline{4} . \overline{0} \mathrm{M} \mathrm{HNO}_{3}$ solution is diluted to a volume of 600.0 mL , what will be the molarity of the diluted solution? ($0.17 \mathrm{M} \mathrm{HNO}_{3}$)

$$
\begin{aligned}
& C_{1}=25.0 \mathrm{~mL} \\
& V_{1}=4.0 \mathrm{M} \\
& C_{2}=? \\
& v_{2}=600.0 \mathrm{~mL}
\end{aligned}
$$

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
&(25.0 \mathrm{~mL})(4.0 \mathrm{M})=\left(C_{2}\right)(600.0 \mathrm{~mL}) \\
& C_{2}=\frac{(25.0 \mathrm{~mL})(4.0 \mathrm{M})}{(600.0 \mathrm{~mL})} \\
&=0.17 \mathrm{M}
\end{aligned}
$$

(e) What initial volumerof $1 \overline{\mathrm{M}}$ hydrochloric acid is required to make 2.0 L of 0.50 M hydrochloric acid solution? $\left(56 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$

$$
\begin{aligned}
& c_{1}=18 \mathrm{M} \\
& v_{1}=? \\
& c_{2}=0.50 \mathrm{M} \\
& v_{2}=2.0 \mathrm{~L}
\end{aligned}
$$

$$
c_{1} v_{1}=c_{2} v_{2}
$$

$$
(18 \mathrm{M})\left(v_{1}\right)=(0.50 \mathrm{M})(2.0 \mathrm{~L})
$$

$$
\begin{aligned}
v_{1} & =\frac{(0.50 \mathrm{~m})(2.0 \mathrm{~L})}{(18 \mathrm{M})} \\
& =0.056 \mathrm{~L}=56 \mathrm{~mL}
\end{aligned}
$$

(f) 250.0 mL of 0.20 M phosphoric acid is added to 1.00 L of water. What is the molarity of the resulting solution? $\left(0.040 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}\right)$

$$
\begin{aligned}
C_{1} & =0.20 \mathrm{M} \\
v_{1} & =250.0 \mathrm{~mL} \\
c_{2} & =? \\
v_{2} & =250.0 \mathrm{~mL}+ \\
& =1000 \mathrm{~mL} \\
& =1250 \mathrm{~mL}
\end{aligned}
$$

$$
\begin{aligned}
\bar{C}_{1} V_{1} & =C_{2} V_{2} \\
(0.20 \mathrm{M}) & (250.0 \mathrm{~mL})=\left(C_{2}\right)(1250 \mathrm{~mL}) \\
C_{2} & =\frac{(0.20 \mathrm{M})(250.0 \mathrm{~mL})}{(1250 \mathrm{~mL})} \\
& =0.040 \mathrm{M}
\end{aligned}
$$

* volume units must be the sane!

