Chemistry 11	
Solution Chemistry	III

Name: Date: Block:

- Titrations
 Titrations Equipment

Titrations		
Warm up 1. Balance the following neutra	alization equation:	
_	H_2SO_4 + NaOH → H_2O + _	Na ₂ SO ₄
2. Write the formulas for the a	cid and base that will react to give K ₂ C	O_3 and water.
The salt breaks up	o to become:	
The sair Breath up	to bosome.	
Acid:	Base:	
Acid-Base Titration:		
A method to determine	e the concentration of an	solution by reacting it with another
substance of	concentration.	
The solution whose con	ncentration is known is called the	solution.
Example 1.		
	10.0 mL of HCl with 18.25 mL of 0.100	M NaOH. Calculate the [HCI].
⇒ Balanced equation:		
⇒ Calculate the moles of	the standardized colutions	
→ Calculate the moles of	the standardized solution.	
⇒ Find the moles of the u	ınknown solution:	
\Rightarrow Find the concentration	of the unknown solution:	
\Rightarrow In one step		

Practice 1: If 46.2 mL of 2.50 M NaOH is required to neutralize 1.54 M of a phosphoric acid solution, H_3PO_4 , what volume of phosphoric acid was needed to reach the equivalence point?
Practice 2: If $8.60~\text{mL}$ of $0.0994~\text{M}$ HNO $_3$ is required to neutralize $25.00~\text{mL}$ of a strontium hydroxide solution, what is the molarity of the strontium hydroxide?
Practice 3: Calculate the molarity of an acetic acid solution (CH $_3$ COOH) if 34.57 mL of this solution are needed to neutralize 25.19 mL of 0.1025 M sodium hydroxide.

Practice 4:

Consider the following results from a titration lab.

 $5.00\,\mathrm{g}$ of NaOH was dissolved to make a 200. mL solution Below is the volume of the NaOH solution needed to neutralize 25.0 mL H₃PO₄.

	Trial #1	Trial #2	Trial #3
Initial reading of burette (mL)	0.00	12.45	24.94
Final reading of burette (mL)	12.45	24.94	37.36

Initial reading of burette (mL)	0.00	12.45	24.94
Final reading of burette (mL)	12.45	24.94	37.36

c) What was the average volume of NaOH was needed?

d) What is the concentration of the acid?

Titrations Worksheet

Titration Equipment	
Glassware	Notes
Burette	•
Erlenmeyer Flask	•
TE S	•
	•
	Equivalence Point: •
	•
Pipette	•
	•
	•

- ✓ Make sure to read the <u>bottom</u> of the meniscus
- ✓ Take data from at least _____ trials.
- ✓ Your values from each trial should be close together. If they are not, take another reading to double check!

Titration set-up:

> Preparing your glassware:

- 1. Rinse with WATER
- 2. Rinse with CHEMICAL
- 3. Fill with CHEMICAL