Chemistry 11

Solution Practice Test
Name: Key
Date:
Block:

1. During a lab activity, you dilute 45 mL of a 8.5 M HCl solution to a final volume of 120 mL . What is the resulting HCl concentration?
a. 2.3 M
$c_{1} v_{1}=c_{2} v_{2}$
b. 3.2 M
c. $\quad 5.1 \mathrm{M}$
d. 23 M
$(8.5 M)(45 n L)-C_{2}(120 \mathrm{ML})$
$C_{2}=3.2 \mathrm{M}$
2. Which of the following equations correctly represents the dissociation of calcium chloride in water?
a. $\mathrm{CaCl}_{(\mathrm{aq})} \rightarrow \mathrm{Ca}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}$
b. $\mathrm{CaCl}_{2(\mathrm{qq})} \rightarrow \mathrm{Ca}^{2+}{ }_{\text {(qq) }}+\mathrm{Cl}_{(\mathrm{aq})}$
c. $\mathrm{CaCl}_{2(\mathrm{aq})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})}$
d. $\mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})}$
3. When added to a solution containing Mg^{2+}, which anion will create a precipitate?
a. $\mathrm{NO}_{3}{ }^{-}$
b. Cl^{-}
c. ${ }^{\text {d. }} \mathrm{SH}^{-}-$

4. When added to an iron (III) iodide solution, which of the following compounds will create a precipitate?
a. cesium nitrate
b. hydrochloric acid

$$
\mathrm{FeI}_{3(a q)}+\mathrm{NH}_{4} \mathrm{OH}_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{I}_{(\mathrm{aq})}+\mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})}
$$

c. copper (II) sulphate
d. ammonium hydroxide
5. How man mL f 0.550 NaOH would be required to titrate 25.0 mL of a 0.388 M solution of hydrochloric acid?
a. 17.6 mL
b. 25.0 mL
c. $\quad 35.4 \mathrm{~mL}$

$$
0.025 \mathrm{~L}_{\mathrm{HCl}} \times \frac{0.388 \mathrm{~mol} \mathrm{H}_{\mathrm{HI}}}{1 \mathrm{~L}} \times \frac{1 \mathrm{Mol} 1_{\mathrm{NCOH}}}{1 \mathrm{~mol} \mathrm{Hol}} \times \frac{1 \mathrm{~L}_{\mathrm{NaOH}}}{0.550_{\mathrm{Mol}}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}
$$

d. 46.9 mL

$$
=17.6 \mathrm{~mL} \mathrm{NaOH}
$$

6. A student must prepare a $\overline{3} \overline{0} \overline{0} \mathrm{~L}$ solution of $0 . \overline{7} \overline{5} 0 \mathrm{M} \mathrm{NaOH}$. She is given a stock solution of $\overline{1} \overline{2} . \overline{0} \mathrm{M}$ NaOH .
a. What volume of stock solution is needed to prepare the final solution?

$$
\begin{gathered}
C_{1} V_{1}=C_{2} V_{2} \\
(12.0 \mathrm{M})\left(V_{1}\right)=(0.750 \mathrm{M})(3.00 \mathrm{~L}) \\
V_{1}=0.188 L_{\mathrm{NaOH}}
\end{gathered}
$$

b. What volume of water was added to prepare the final solution?

$$
3.00 \mathrm{~L}-0.188 \mathrm{~L}=2.81 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}
$$

7. MnSO_{4} was dissolved in water. What is the ionization equation?

$$
\mathrm{MnSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(a)+\mathrm{SO}_{4}^{2-}(a 9)
$$

8. A chemist mixes a $\overline{2} \overline{2} 5 \mathrm{~mL}$ of $\overline{-\overline{3}} \overline{8} \mathrm{M} \mathrm{Na} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution with $\overline{3} . \overline{\mathrm{g}}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. What is the concentration of each ion in this solution?

$\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$
3.8 M

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{~K}^{+}+\mathrm{CO}_{3}^{2-} \\
& 0.12 \mathrm{M}
\end{aligned}
$$

$$
\left[\mathrm{Na}^{+}\right]=7.6 \mathrm{M} \quad\left[\mathrm{CO}_{3}^{2-}\right]=3.9 \mathrm{M} \quad\left[\mathrm{C}^{+}\right]=0.24 \mathrm{M}
$$

9. For the following solutions, use a flow chart to describe the process of separating the ions from each other.
a. $\mathrm{Mg}^{2+}, \mathrm{Pb}^{2+}$ and Zn^{2+}

| 3 Add $\mathrm{NaOH}_{(a)}$
$\mathrm{Mg}(\mathrm{OH})_{2(s)}$ pet
b. $\mathrm{OH}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{S}^{2-}$
$\mathrm{OH}^{-}, \mathrm{S}^{2-} \xrightarrow{\left(\text { (i) Add } \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{as})}\right.} \underset{\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \mathrm{ppt}}{ }$
$\mathrm{S}^{2-} \mathrm{Mg}(\mathrm{OH})_{2(s)} \mathrm{Pp}^{+}$
|(3) Add $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq) }}$
10. Predict the products in the following reactions. Then, balance the equations. Be sure to indicate the state (aq or s), of each product.
a. $\ldots \mathrm{CaCl}_{2(\mathrm{aq)}}+2 \mathrm{KNO}_{3(\text { aq) }} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{KCl}($ aq)
b. $2 \mathrm{HCl}_{(\mathrm{aq})}+\ldots \mathrm{Ca}(\mathrm{OH})_{2(\text { aq) }} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{CaCl}_{2 \text { (aq) }}$
11. Write a formula equation, complete ionic equation and net ionic equation for the following reactions:
a. Strontium hydroxide and zinc chloride

Formula:
complete ionic:

Net Ionic:

$$
\mathrm{Sr}(\mathrm{OH})_{2(a, 9)}+\mathrm{ZnCl}_{2(a)} \rightarrow \mathrm{SrCl}_{2(4)}+\mathrm{Zn}(\mathrm{OH})_{2(s)}
$$

$$
\mathrm{Sr}_{r}^{2+}(a,)+2 O H_{(a,)}^{-}+2 n_{(a n)}^{2+}+20 T_{(a)}^{-} \rightarrow S^{2 t}(a)+2 \mathrm{Cr}_{(a, 1)}^{-}+\mathrm{Zn}(\mathrm{OH})_{2(s)}
$$

$$
\mathrm{Zn}_{(a-9)}^{2+}+2 \mathrm{OH}_{(a,)}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2(s)}
$$

b. Ammonium bromide and copper (I) sulphate
12. Determine whether the following are soluble or have low solubility.
a. Barium chloride
soluble)/ low solubility (circle one)
b. $\mathrm{Sn}(\mathrm{OH})_{4}$
soluble low solubility (circle one)
13. A titration was performed that required 12.7 mL of $0 . \overline{1} \overline{5} \overline{0} \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ to titrate $\overline{2} \overline{5} . \overline{0} \overline{0} \mathrm{~mL}$ of a hydrochloric acid, HCl , solution. Determine the molarity of the hydrochloric act er

$$
\begin{gathered}
2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \longrightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
12.7 \mathrm{~mL}{\mathrm{Mg}(0 \mathrm{H})_{2}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.150 \mathrm{~mol} \mathrm{mg}_{(\mathrm{OH})_{2}}^{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\left.1 \mathrm{~mol} \mathrm{mg}^{(O H}\right)_{2}}=0.00381 \mathrm{~mol} \mathrm{HCl}}{} \\
\frac{0.00381 \mathrm{mOl} \mathrm{HCl}}{25.00 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=0.152 \mathrm{M} \mathrm{HCl}
\end{gathered}
$$

$$
\begin{aligned}
& 2 \mathrm{NH}_{4} \mathrm{Br}_{(\mathrm{aq})}+\mathrm{CV}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow 2 \mathrm{CBr}_{(s)}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4(a, 9)} \\
& 2 \mathrm{NH}_{4}^{+}(a, 1)+2 \mathrm{Br}_{(a,)}^{-}+2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(a) \rightarrow 2 \mathrm{CuBr}(\mathrm{~s})+2 \mathrm{NH}_{4}^{+}(a,)+\mathrm{SO}_{4}^{2-}(a,) \\
& 2 \mathrm{Cu}^{+}{ }_{(a) 1}+2 \mathrm{Br}^{-}{ }_{(a s)} \longrightarrow 2 \mathrm{CuBr}(s)
\end{aligned}
$$

14. Consider the following results from a titration lab.
$\overline{4} \overline{5} \overline{0} \mathrm{~g}$ of KOH was dissolved to make a $10 \overline{0}$. mL solution
Below is the volume of the KOH solution needed to neutralize $15.0 \mathrm{~mL} \mathrm{H}_{3} \mathrm{PO}_{4}$.

	Trial \#1	Trial \#2	Trial \#3	Trial \#4
Initial reading of burette (mL)	2.56	8.95	13.35	17.55
Final reading of burette (mL)	8.95	13.35	17.55	21.75
Volume of $\mathrm{KOH}(\mathrm{mL})$	6.39 mL	4.40 mL	4.20 mL	4.20 mL

a. What is the concentration of the standardized solution of KOH ?

$$
\frac{4.50 \mathrm{~g} \mathrm{KOH}}{100 . \mathrm{mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{KOH}}{56.11 \mathrm{~g} \mathrm{KOH}}=0.802 \mathrm{M} \mathrm{KOH}^{2}
$$

b. What was the average volume of KOH was needed? (Only use data from three trials!!) * eliminate ouHiers!

$$
\frac{4.40 \mathrm{~mL}+4.20 \mathrm{~mL}+4.20 \mathrm{~mL}}{3}=4.27 \mathrm{~mL} \mathrm{KOH}
$$

c. What is the concentration of the acid?

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \longrightarrow \mathrm{~K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \\
4.27 \mathrm{~mL}_{\mathrm{KOH}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.802 \mathrm{~mol}_{\mathrm{KOH}}^{1 \mathrm{~L}}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.00114 \mathrm{~mol}_{\mathrm{H}_{3} \mathrm{PO}_{4}}^{3 \mathrm{~mol} \mathrm{KOH}}=0.1000 \mathrm{~mL} \\
\frac{0.00114 \mathrm{~mol}_{3} \mathrm{HO}_{4}}{15.0 \mathrm{~mL}} \times \frac{1 \mathrm{~L}}{150.0760 \mathrm{M}_{\mathrm{H}_{3} \mathrm{PO}_{4}}}
\end{gathered}
$$

