Chemistry 11 Solution Practice Test

Name: Ve Date: **Block:**

low solubility

- 1. During a lab activity, you dilute 45 mL of a 8.5 M HCl solution to a final volume of 120 mL. What is the resulting HCl concentration?
 - $C_1V_1 = C_2V_2$ a. 2.3 M $(8.5M)(45L) = C_2(120L)$ b.)3.2 M c. 5.1 M C2= 32M d. 23 M
- 2. Which of the following equations correctly represents the dissociation of calcium chloride in water? a. CaCl (aq) \rightarrow Ca⁺(aq) + Cl⁻(aq)

 - b. $CaCl_{2(aq)} \rightarrow Ca^{2+}(aq) + Cl^{-}(aq)$ c. $CaCl_{2(aq)} \rightarrow Ca^{2+}(aq) + 2Cl^{-}(aq)$

 - d. $CaCl_{2(aq)} + H_2O \rightarrow Ca^{2+}(aq) + 2Cl^{-}(aq)$
- 3. When added to a solution containing Mg²⁺, which anion will create a precipitate?
 - a. NO₃b. Cl-
 - C. OH-d. S²⁻
- 4. When added to an iron (III) iodide solution, which of the following compounds will create a precipitate? Fels(ag) + NH40H (ag) -> NH4 I (ag) + Fe (OH)3(2)
 - a. cesium nitrate
 - b. hydrochloric acid
 - c. copper (II) sulphate
 - ammonium hydroxide d. '
- 5. How many mL of 0.550 M NaOH would be required to titrate 25.0 mL of a 0.388 M solution of hydrochloric acid? NAOH + HCI -> NACI + H,0

a. 17.6 mL 0.025 LHCI × 0.388 mol Htl x 1 mol Neo H x 1 LNooH x 1000 mL b. 25.0 mL c. 35.4 mL d. 46.9 mL = 17.6mL N-04

- 6. A student must prepare a 3.00 L solution of 0.750 M NaOH. She is given a stock solution of 12.0 M NaOH.
 - a. What volume of stock solution is needed to prepare the final solution?

$$C_1V_1 = C_2V_2$$

(12.0M)(V₁) = (0.750M)(3.00L)
 $V_1 = 0.188L_{NaOH}$

b. What volume of water was added to prepare the final solution?

7. MnSO₄ was dissolved in water. What is the ionization equation?

$$M_{n}SO_{4}(a_{\eta}) \longrightarrow M_{n}^{2+}(a_{\eta}) + SO_{4}^{2-}(a_{\eta})$$

- 8. A chemist mixes a $225 \text{ mL of a } 3.8 \text{ M Na}_2\text{CO}_3$ solution with $3.8 \text{ g of K}_2\text{CO}_3$. What is the concentration of each ion in this solution?
- FK.CO.] [Na, CO,] $\frac{3.8 g_{k_2} c_{03}}{225 nL} \times \frac{1000 nL}{1 L} \times \frac{1 m 1 k_2 c_{03}}{188.21 q} = 0.12 M k_2 c_{03}$ $Na_2Co_3 \rightarrow 2Na^+ + CO_3^{2-}$ 38M 7.6M 3.8M $K_2CO_3 \rightarrow 2k^+ + CO_3^{2-}$ 0.12M 0.24M 0.12M [Na+]=7.6M [CO32-]=3.9M [K+]=0.24M 9. For the following solutions, use a flow chart to describe the process of separating the ions from (Other answers possible) each other. a. Mg^{2+} , Pb^{2+} and Zn^{2+} Mg2+, Zn2+ Mg2+, Zn2+ PbClz (3) ppt 12 Add Nass (m) Mg2+ ZnS(3) ppt 13 Add NaOH (m) Mg (OH) Z(S) PPt b. OH-, PO43-, S2- OH^{-}, S^{2-} $OH^{$ 3 Add Pb (N 03)2 (ag) PbS (a) ppt
 - 10. Predict the products in the following reactions. Then, balance the equations. Be sure to indicate the state (aq or s), of each product.

a.
$$CaCl_{2(aq)} + \underline{2} KNO_{3(aq)} \rightarrow Ca(NO_{3})_{2(eq)} + \underline{2} KCl_{(eq)}$$

b. $\underline{2} HCl_{(aq)} + \underline{Ca(OH)_{2(aq)}} \rightarrow \underline{2} H_{2}O_{(eq)} + CaCl_{2(eq)}$

- 11. Write a formula equation, complete ionic equation and net ionic equation for the following reactions:
 - a. Strontium hydroxide and zinc chloride

12. Determine whether the following are soluble or have low solubility.

- a. Barium chloride soluble / low solubility (circle one)
 b. Sn(OH)₄ soluble / low solubility (circle one)
- 13. A titration was performed that required 12.7 mL of 0.150 M Mg(OH)₂ to titrate 25.00 mL of a hydrochloric acid, HCl, solution. Determine the molarity of the hydrochloric acid,

$$2 HCI + Mg(OH)_2 \longrightarrow MgCI_2 + 2H_2C$$

$$12.7 \text{ My}(0H)_{2} \times \frac{11}{1000 \text{ mL}} \times \frac{0.150 \text{ molmy}(0H)_{2}}{11 \text{ L}} \times \frac{2 \text{ mol}(HC)}{1 \text{ molmy}(0H)_{2}} = 0.0038 \text{ mol}(HC)$$

$$\frac{0.00381 \text{ mol}_{Hel}}{25.00 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 0.152 \text{ M}_{Hel}$$

14. Consider the following results from a titration lab.

	· · · · · · · · · · · · · · · · · · ·			
	4.50 g of KOH	was dissolved to make	<mark>a 100. mL</mark> :	solution
Below is t	he volume of th	ne KOH solution needed	d to neutral	ize <mark>15.0 mL H₃PO</mark> 4

	Trial #1	Trial #2	Trial #3	Trial #4
Initial reading of burette (mL)	2.56	8.95	13.35	17.55
Final reading of burette (mL)	8.95	13.35	17.55	21.75
Volume of KOH (mL)	6.39mL	4.40mL	4.20mL	4.20mL

a. What is the concentration of the standardized solution of KOH?

b. What was the average volume of KOH was needed? (Only use data from three trials!!) * eliminate ovtliers!

c. What is the concentration of the acid?

H3POy + 3 KOH - K3POy + 3H20

 $4.27 \text{ mL}_{KOH} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{0.802 \text{ mol}_{KOH}}{1 \text{ L}} \times \frac{1 \text{ mol}_{H_sPoy}}{3 \text{ mol}_{KOH}} = 0.00114 \text{ mol}_{H_sPoy}$

$$\frac{0.00114 \text{ mol } H_3P0_4}{15.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1L} = 0.0760MH_3P0_4}$$