1. What mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is contained in 83.5 mL of a 6.15 M solution?

2. If 9.0 mL of $4.00 \mathrm{M} \mathrm{HNO}_{3}$ solution is diluted to a volume of 600.0 mL , what will be the molarity of the diluted solution?

3. What initial volume of 6.0 M hydrochloric acid is required to make 2.00 L of 0.500 M hydrochloric acid solution?

4. How much water must be added to a 35.0 mL sample of 10.0 M HCl to give a resulting concentration of 0.350 M ?

$$
\begin{gathered}
C_{1} v_{1}=C_{2} v_{2} \\
\searrow \text { ? } \\
\text { Water to be added }=V_{2}-35.0 \mathrm{~mL}
\end{gathered}
$$

5. Write the balanced ionization equation for the following solutes in water:
a. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}\left(\mathrm{aq}_{9}\right) \rightarrow 2 \mathrm{Na}^{+}\left(\mathrm{aq}^{2}\right)+\mathrm{CO}_{3}^{2-}\left(\mathrm{a}_{q}\right)
$$

b. MgSO_{4}

$$
\mathrm{MgSO}_{4}\left(\mathrm{a}_{2}\right) \rightarrow \mathrm{Mg}_{\left(a_{g}\right)}^{2+}+\mathrm{SO}_{4}^{2-}\left(\mathrm{a}_{2}\right)
$$

c. Barium nitrate

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a)} \rightarrow \mathrm{Ba}_{(a 9)}^{2+}+2 \mathrm{NO}_{3}^{-}\left(\mathrm{a}_{2}\right)
$$

6. 250.0 mL of 0.60 M HCl is added to 300.0 mL of 1.0 M HBr . What is the final concentration of each ion in solution?
[HCl]

Formula:
7. Write a formula equation, complete ionic equation and net ionic equation for the following reactions:
a. Magnesium sulphide and zinc chloride

Complete: Ionic:

Net Ionic
b. Sodium carbonate and barium sulphide

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+\mathrm{BaS}_{(a q)} \rightarrow \mathrm{BaCO}_{3}(s)+\mathrm{Na}_{2} \mathrm{~S}_{(a r)} \\
& 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(a)+\mathrm{Ba}_{(a)}^{2+}+\mathrm{S}_{(a r)}^{2-} \rightarrow \mathrm{BaCO}_{3(s)}+2 \mathrm{Na}_{(a r)}^{+}+\mathrm{S}_{(a,)}^{2-} \\
& \mathrm{Ba}_{(a q)}^{2+}+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3(s)}
\end{aligned}
$$

c. $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}$ and $\mathrm{CaCl}_{2(\mathrm{aq})} \longrightarrow 2 \mathrm{HCl}\left(\mathrm{arp}+\mathrm{CaSO}_{3}(\mathrm{~s})\right.$

$$
\begin{gathered}
2 \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{SO}_{3}^{2-}+\mathrm{Ca}_{(\mathrm{aq})}^{2+}+2 \mathrm{Cl}_{(\mathrm{ar})}^{-} \rightarrow 2 \mathrm{H}_{(a r)}^{+}+2 \mathrm{Cl}_{(\mathrm{aq})}^{(}+\mathrm{CaSO}_{3(s)} \\
\mathrm{Ca}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{3(s)}
\end{gathered}
$$

8. A solution contains the following ions. Using a flow chart, show what compounds could be added and in what order to separate these ions. * other answers possible
a. $\mathrm{Cu}^{2+}, \mathrm{Ba}^{2+}$ and Ag^{+}.

b. $\mathrm{Cl}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{S}^{2-}$

$\mathrm{AgCl}_{\text {(s) }} \mathrm{ppt}$
9. A titration was performed that required 14.7 mL of 0.102 M NaOH to titrate 25.00 mL of a hydrochloric acid, HCl , solution. Determine the concentration of the hydrochloric acid.

$$
\begin{gathered}
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
L_{\mathrm{NaOH}} \times \frac{\mathrm{MOl}}{\mathrm{NaOH}} \times \frac{\mathrm{MOl}_{\mathrm{HCl}}}{\mathrm{mOl}_{\mathrm{NaOH}}} \times \frac{1}{L_{\mathrm{HCl}}}=M_{\mathrm{HCl}}
\end{gathered}
$$

10. If 46.2 mL of 2.50 M NaOH is required to neutralize 1.54 M of a phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, solution, what volume of phosphoric acid was needed to reach the equivalence point?

$$
\begin{gathered}
3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \\
L_{\mathrm{NaOH}} \times \frac{\mathrm{MOl} \mathrm{NaOH}}{L} \times \frac{\mathrm{mol}_{3} \mathrm{PO}_{4}}{\mathrm{~mol} \mathrm{NaOH}} \times \frac{1 \mathrm{~L}_{3} \mathrm{PO}_{4}}{\mathrm{~mol}_{3} \mathrm{PO}_{4}}=L_{\mathrm{H}_{3} \mathrm{PO}_{4}}
\end{gathered}
$$

11. If 8.6 mL of $0.0994 \mathrm{M} \mathrm{HNO}_{3}$ is required to neutralize 25.00 mL of a strontium hydroxide solution, what is the molarity of the strontium hydroxide?

$$
\begin{aligned}
& 2 \mathrm{HNO}_{3}+\mathrm{Sr}(\mathrm{OH})_{2} \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& L_{\mathrm{HNO}_{3}} \times \frac{\mathrm{MOLHNO}_{3}}{L} \times \frac{\left.\mathrm{mol} \mathrm{Sr}^{(O H}\right)_{2}}{\mathrm{MOlHNO}_{3}} \times \frac{1}{L_{\mathrm{Sr}(\mathrm{OH})_{2}}}=M_{\mathrm{Sr}(\mathrm{OH})_{2}}
\end{aligned}
$$

Answer Key

1. $50.3 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$
2. $0.060 \mathrm{M} \mathrm{HNO}_{3}$
3. 0.17 L or 170 mL HCl
4. $965 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$
5. (see work done for this question above)
6. $\left[\mathrm{H}^{+}\right]=0.82 \mathrm{M} \quad\left[\mathrm{Cl}^{-}\right]=0.27 \mathrm{M} \quad[\mathrm{Br}]=0.55 \mathrm{M}$
7. (see work done for this question above)
8. (multiple answers possible - see work done for this question above)
9. 0.0600 M HCl
10. $0.025 \mathrm{LH}_{3} \mathrm{PO}_{4} \quad 0.0250 \mathrm{~L}_{3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}$
11. $1.7 \times 10^{-2} \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$
