Chemistry 12 Solubility Equilibrium Review Package

Name: Date: Block:

I. <u>Multiple Choice</u>

- 1. Which one of the following would form an ionic solution when dissolved in water? A. l₂ C. Ca(NO₃)₂
 - B. CH₃OH

C. Ca(NO₃)₂ D. C₁₂H₂₂O₁₁

3. The complete ionic equation for the reaction between MgCl₂ and AgNO₃ is

- A. $Ag^{+}_{(aq)} + CI^{-}_{(aq)} \rightarrow AgCI_{(s)}$
- B. $2AgNO_{3(aq)} + MgCl_{2(aq)} \rightarrow 2AgCl_{(s)} + Mg(NO_3)_{2(aq)}$
- C. $2Ag^{+}_{(aq)} + Mg^{2+}_{(aq)} + 2NO_{3^{-}(aq)} + 2CI^{-}_{(aq)} \rightarrow MgCI_{2(s)} + 2Ag^{+}_{(aq)} + 2NO_{3^{-}(aq)}$
- D. $2Ag^{+}_{(aq)} + Mg^{2+}_{(aq)} + 2NO_{3^{-}(aq)} + 2CI^{-}_{(aq)} \rightarrow 2AgCI_{(s)} + Mg^{2+}_{(aq)} + 2NO_{3^{-}(aq)}$

4. Which of the following would precipitate out both Ca2+ and Mg2-?

A. S ²⁻	C. SO42-
B. PO ₄ ³⁻	D. CH ₃ COO-

5. The $[SO_4^{2-}]$ in a saturated solution of PbSO₄ is:

A. 1.2 x 10 ⁻¹⁶ M	C. 1.1 x 10 ⁻⁸ M
B. 5.0 x 10 ⁻⁹ M	D. 1.3 x 10 ⁻⁴ M

6. Which one of the following salts is soluble?

A. BaSO4	B. CaCO3	C. K ₃ PO ₄	D. Fe(OH) ₂
----------	----------	-----------------------------------	------------------------

7. The compound Ag₂S has a solubility of 1.3 x 10⁻⁴ M at 25°C. The K_{sp} for this compound is:

A. 2.2 x10 ⁻¹²	C. 1.7x10 ⁻⁸
B. 8.8 x10 ⁻¹²	D. 3.4 x10 ⁻⁸

8. Which of the following could be used to express solubility?

A. mol B. M/s C. g/mL D. mL/min

9. When 100.0 mL of a saturated solution of BaF_2 is heated and all the water is evaporated, 3.6 x10⁻⁴ mol of solute remains. The solubility of BaF_2 is:

A. 1.9 x10⁻¹⁰ M B. 1.3 x10⁻⁵ M C. 3.6 x10⁻⁴ M D. 3.6 x10⁻³ M

10. A solution contains both 0.2M Mg²⁺ and 0.2M Sr²⁺. These ions can be removed separately through precipitation by adding equal volumes of 0.2M solutions of:

A. OH-, and then S ²⁻	C. CO ₃ ²⁻ and then SO ₃ ²⁻
B. Cl-, and then OH ⁻	D. SO_4^{2-} and then PO_4^{2-}

11. Consider the following equilibrium:

 $CaSO_{4(s)} \Leftarrow Ca^{2+}_{(aq)} + SO_{4^{2-}(qq)}$ Which of the following would shift the above equilibrium to the left?

A. adding CaSO _{4(s)}	C. removing some Ca ²⁺ (aq
B. adding MgSO _{4(s)}	D. removing some SO42-(aq)

12. Calculate the solubility of CaC_2O_4 .

A. 2.3 x 10 ⁻⁹ M	C. 4.8 x 10⁻⁵M
B. 1.2 x 10 ⁻⁵ M	D. 8.3 x 10 ₋₄ M

13. How many moles of dissolved solute are present in 100.0mL of a saturated SrCO3 solution?

A. 5.6 x10 ⁻¹¹ mol	C. 2.4 x10-5 mol
B. 2.4 x10 ⁻⁶ mol	D. 2.4 x10-4 mol

14. What happens when equal volumes of 0.2M AgNO3 and 0.2M NaCl are combined?

- A. A precipitate forms because the trial ion product >Ksp
- B. A precipitate forms because the trial ion product $< K_{sp}$

C. No precipitate forms because the trial ion product $>K_{sp}$

D. No precipitate forms because the trial ion product $< K_{sp}$

15. Determine the maximum [Na₂CO₃] that can exist in 1.0L of 0.0010M Ba(NO₃)₂ without forming a precipitate.

A. 2.6 x10 ⁻¹² M	C. 2.6 x10 ⁻⁶ M
B. 2.6 x10 ⁻⁹ M	D. 5.1 x10 ⁻⁵ M

16. When a student mixes equal volumes of 0.20 M Na₂S and 0.20 M Sr(OH)₂,

A. no precipitate forms.	C. a precipitate of only NaOH forms.
B. a precipitate of only SrS forms.	D. precipitates of both NaOH and SrS form.

17. A student wishes to identify an unknown cation in a solution. A precipitate does not form with the addition of SO_4^{2-} , but does form with the addition of S^{2-} . Which of the following is the unknown cation?

A. Ag⁺ B. Mg²⁺ C. Ca²⁺ D. Cu²⁺

18. The solubility of MnS is 4.8×10^{-7} M, at 25C. The K_{sp} value is

A. 2.3 x10⁻¹³ B. 4.8 x10⁻⁷ C. 9.6 x10⁻⁷ D. 6.9 x10⁻⁴

19. A 200.0mL solution contains 0.050 mol of Ba(NO₃)₂. The [NO₃-] is:

A. 0.050 M	C. 0.25M
B. 0.10 M	D. 0.50 M

20. Consider the following solubility equilibrium:

 $MgCO_{3(s)} \Leftarrow Mg^{2+}(aq) + CO_{3}^{2-}(aq)$

The addition of which of the following substances would decrease the solubility of MgCO₃? A. H₂O B. NaCl C. NaOH D. Na₂CO₃

- 21. In a solubility equilibrium, the:
 - A. rate of dissolving equals the rate of crystallization.
 - B. neither dissolving nor crystallization are occurring.
 - C. concentration of solute and solvent are always equal.
 - D. mass of dissolved solute is greater than the mass of the solution.
- 22. Which of the following solutions would have [Fe³⁺] 0.020M?

A. 0.40 L of 0.050M Fe(NO ₃) ₃	C. 0.50 L of 0.040M FeC ₆ H ₅ O ₇
B. 0.80 L of 0.020M Fe ₂ (SO ₄) ₃	D. 0.50L of 0.010M Fe ₂ (C ₂ O ₄) ₃

- 23. Which of the following substances has the lowest solubility? A. BaS B. CuS C. FeS D. ZnS
- 24. The complete ionic equation for the reaction between MgS and Sr(OH)2 is:
 - A. $MgS_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + SrS_{(s)}$
 - B. $MgS_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + SrS_{(aq)}$
 - C. $Mg^{2+}(aq) + S^{2-}(aq) + Sr^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg^{2+}(aq) + 2OH^{-}(aq) + SrS_{(s)}$
 - D. $Mg^{2+}(aq) + S^{2-}(aq) + Sr^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2(s)} + Sr^{2+}(aq) + S^{2-}(aq)$
- 25. Consider the following equilibrium:

 $Fe(OH)_{2(s)} \Rightarrow Fe^{2+}(aq) + 2OH^{-}(aq)$

Which of the following will cause the equilibrium to shift to the right?

A. adding KOH	C. adding Fe(OH)2
B. adding Na ₂ S	D. adding Fe(NO ₃) ₂

26. Consider the following experiment:

The unknown solution could contain

A. 0.20M OH-B. 0.20M NO3⁻ C. 0.20M PO4³⁻ D. 0.20M SO4²⁻

27. A compound has	s a solubility of 7.1 x	10-5M at 25°C. The com	pound is:	
A. CuS	B. AgBr	C. CaCO3	D. CaSO4	
28. In a saturated sol A. equal to ze B. equal to the	lution of KNO3, the ra ero. e rate of dissolving.	ate of crystallization is: C. less th D. greate	an the rate of dissolving er than the rate of dissol	ving.
29. At a certain temp A. 1.6 x	perature, the solubili 10 ⁻⁶	ty of BaF ₂ is 7. 4 x 10 ⁻³ M x 10 ⁻⁵ C. 1.1 x 1	A. The K _{sp} of BaF ₂ is: 0 ⁻⁴ D. 7. 4 x10 ⁻³	
30. What is the maxir A. 3. 4 x10 ⁻⁷ M B. 3. 4 x 10 ⁻⁶ M	num [Sr ²⁺] that can	exist in a solution of 0.10 C. 1. 7 x D. 5.8 x 1	0 M Na2SO4 ? 10 ⁻⁶ M 0 ⁻⁴ M	
31. A student could p A. water. B. sodium iodi	orecipitate silver chl de.	oride from a saturated C. sodiur D. sodiur	solution of silver chloride n nitrate. n chloride.	e by adding
32. When equal volu	mes of 0.20M SrBr2 a	and 0.20M AgNO3 are c	ombined,	

- A. no precipitate forms.
- B. a precipitate of only AgBr forms.
- C. a precipitate of only $Sr(NO_3)_2$ forms.
- D. precipitates of both AgBr and Sr(NO₃)₂ form.
- 33. Consider the following solubility equilibrium:

$PbCl_{2(s)} \Leftrightarrow Pb^{2+}(aq) + 2Cl-(aq)$

A student adds NaCl to a saturated solution of PbCl₂. When equilibrium is reestablished, how have the concentrations changed from the original equilibrium?

- A. [Pb²⁺] and [Cl-] both increased.
- B. [Pb²⁺] and [Cl-] both decreased.
- C. [Pb²⁺] decreased and [Cl-] increased.
- D. [Pb²⁺] decreased and [Cl-] decreased.

34. Solid Ag₂CrO₄ is added to water to form a saturated solution. The K_{sp} value can be calculated by

A.
$$K_{sp} = \left[CrO_4^{2-} \right]^2$$

- B. $K_{sp} = \left[CrO_4^{2-}\right]^3$
- C. $K_{sp} = \frac{\left[CrO_4^{2^-}\right]^3}{2}$
- D. $K_{sp} = 4 \left[CrO_4^{2-} \right]^3$

II. Short Answer:

1. A chemistry stockroom contains a bottle of 12.0 M HCl. A teacher needs to make up 800.0 mL of a 3.0 M solution of HCl. What volume of the stock solution (12.0 M) does the teacher need to use?

2. A student has 600.0 mL of a 0.30 M solution of HNO3. How much water <u>must she add</u> in order to make it a 0.15 M solution?

- 3. An aqueous solution of Pb(NO₃)₂ is mixed with an aqueous solution of KBr and a precipitate forms.
 - a. Write a balanced formula equation for this reaction. (Include all subscripts.)
 - b. Write a balanced total ionic equation for this reaction. (Include all subscripts.)
 - c. Write a balanced net ionic equation for this reaction. (Include all subscripts.)
- 4. Devise a procedure to separate the ions Ba^{2+} , Mg^{2+} , Ag^{+}

5. Calculate the molar solubility of the following solutions: a. BaCO₃

b. Mg(OH)₂

6. Will a precipitate form if 100 mL of 1.0×10^{-3} M Pb(NO₃)₂ solution is added to 100.0 mL of 2.0×10^{-3} M MgSO₄ solution? Show all calculations and include theTrial Ksp.