Chemistry 12
Solubility Equilibrium Review Package

Name:
Date: Block:

I. Multiple Choice

1. Which one of the following would form an ionic solution when dissolved in water?
A. I_{2}
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
soluble in water
(pg. 4 databooklet)
2. In a saturated solution of $\mathrm{Zn}(\mathrm{OH})_{z^{\prime}}$, the $\left[\mathrm{Zn}^{2+}\right]$ is:
A. less than $0.10 \mathrm{M} \quad$ C. more than 0.10 M , but less than 1.0 M
B. more than 10.0 M
D. more than 1.0 M , but less than 10.0 M
3. The complete ionic equation for the reaction between MgCl_{2} and AgNO_{3} is
A. $\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\text {(aq) }} \rightarrow \mathrm{AgCl}_{(s)}$
B. $2 \mathrm{AgNO}_{3(a q)}+\mathrm{MgCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq) }}$
C. $2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Mg}^{2+}{ }_{(\text {aq })}+2 \mathrm{NO}_{3^{-}(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\text {(q) })} \rightarrow \mathrm{MgCl}_{2(s)}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3^{-}(\mathrm{aq})}$
D. $2 \mathrm{Ag}^{+}(\mathrm{aq)})+\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3^{-}(\mathrm{aq})}+2 \mathrm{Cl}_{(\text {(aq) })} \rightarrow 2 \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Mg}^{2+}\left(\mathrm{aq)}+2 \mathrm{NO}_{3^{-}(\mathrm{aq})}\right.$
4. Which of the following would precipitate out both Ca^{2+} and Mg^{2+} ?
A. S^{2-}
B. $\mathrm{PO}_{4}{ }^{3-}$
C. $\mathrm{SO}_{4}{ }^{2-}$
D. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
low solubility
5. The $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ in a saturated solution of PbSO_{4} is:
A. $1.2 \times 10^{-16} \mathrm{M}$
C. $1.1 \times 10^{-8} \mathrm{M}$
B. $5.0 \times 10^{-9} \mathrm{M}$
D.) $.3 \times 10^{-4} \mathrm{M}$

$K_{s p}=1.8 \cdot 10^{-8}=5^{2}$
6. Which one of the following salts is soluble?
A. BaSO_{4}
B. CaCO_{3}
(c.) $\mathrm{K}_{3} \mathrm{PO}_{4}$
$1.3 \cdot 10^{-4}=5=\left[\mathrm{SO}_{4}{ }^{2-}\right]$
7. The compound $\mathrm{Ag}_{2} \mathrm{~S}$ has a solubility of $1.3 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{K}_{\text {sp }}$ for this compound is:
A. 2.2×10^{-12}
B. 8.8×10^{-12}
C. 1.7×10^{-8}
D. 3.4×10^{-8}
8. Which of the following could be used to express solubility?

$$
\begin{aligned}
\operatorname{Ag}_{\frac{2}{} S} \rightleftharpoons & 2 \mathrm{Ag}^{t}+\mathrm{S}^{2-} \\
\mathrm{Ksp}^{2} & =(2 \mathrm{~s})^{2}(\mathrm{~s}) \\
& =4 \mathrm{~s}^{3} \\
& =4\left(1.3 \cdot 10^{-4}\right)^{3} \\
& =8.8 \cdot 10^{-18}
\end{aligned}
$$

A. mol
B. M / s
(C.) g / mL
D. $\mathrm{mL} / \mathrm{min}$
9. When 100.0 mL of a saturated solution of BaF_{2} is heated and all the water is evaporated, $3.6 \times 10^{-4} \mathrm{~mol}$ of solute remains. The solubility of BaF_{2} is:
A. $1.9 \times 10^{-10} \mathrm{M}$
B. $1.3 \times 10^{-5} \mathrm{M}$
C. $3.6 \times 10^{-4} \mathrm{M}$
D. $3.6 \times 10^{-3} \mathrm{M}$
$\frac{3.6 \cdot 10^{-4} \mathrm{~mol}}{0.100 \mathrm{~L}}$
10. A solution contains both $0.2 \mathrm{M} \mathrm{Mg}^{2+}$ and $0.2 \mathrm{M} \mathrm{Sr}{ }^{2+}$. These ions can be removed separately through precipitation by adding equal volumes of 0.2 M solutions of:
A. OH -, and then S^{2+}
B. Cl -, and then $\mathrm{OH}-$
C. $\mathrm{CO}_{3}{ }^{2-}$ and then $\mathrm{SO}_{3}{ }^{2-}$
D. $\mathrm{O}_{4}{ }^{2-}$ and then $\mathrm{PO}_{4}{ }^{2-}$
11. Consider the following equilibrium:

$$
\mathrm{CaSO}_{4(\mathrm{~s})} \leftrightharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{sp}_{4^{2-}}
$$

Which of the following would shift the above equilibrium to the left?
A. adding $\mathrm{CaSO}_{4(s)}$ no shift
C. removing some $\mathrm{Ca}^{2+}($ aq $) \longrightarrow$
(B.) adding $\mathrm{MgSO}_{4(s)}$
5
D. removing some $\mathrm{SO}_{4}{ }^{2-}$ (aq)
\longrightarrow
12. Calculate the solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$.
A. $2.3 \times 10^{-9} \mathrm{M}$
B. $1.2 \times 10^{-5} \mathrm{M}$
C. $4.8 \times 10^{-5} \mathrm{M}$

$K_{s p}=2.3 \cdot 10^{-9}=s^{2}$
$4.8 \cdot 10^{-5 M}=5=\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right]$
13. How many moles of dissolved solute are present in 100.0 mL of a saturated SrCO_{3} solution?
(2) $\frac{2.4 \cdot 10^{-5} \mathrm{Mol}}{\mathrm{L}} \times \frac{0.100 \mathrm{~L}}{1}=$
$L \quad$ A. $5.6 \times 10^{111} \mathrm{~mol}$
C. $2.4 \times 10^{-5} \mathrm{~mol}$
B. $2.4 \times 10^{-6} \mathrm{~mol}$
D. $2.4 \times 10^{-4} \mathrm{~mol}$
(1) $\mathrm{SrCO}_{S} \rightleftharpoons \mathrm{Sr}_{S}^{24}+\mathrm{CO}_{3}^{2-}$
$K_{s p}=5.6 \cdot 10^{-10}=s^{2}$
$2.4 \cdot 10^{-5 M}=s=\left[\mathrm{SrCO}_{3}\right]$
14. What happens when equal volumes of $0.2 \mathrm{M}_{\mathrm{AgNO}_{3}}$ and 0.2 M NaCl are combined?
$\mathrm{AgCl}(8) \mathrm{K}_{8}=1.8 \cdot 10^{-10}$
A. A precipitate forms because the trial ion product $>\mathrm{K}_{\text {sp }}$
B. A precipitate forms because the trial ion product $<\mathrm{K}_{\text {sp }}$
C. No precipitate forms because the trial ion product $>\mathrm{K}_{\text {sp }}$
D. No precipitate forms because the trial ion product < K sp

$$
\begin{aligned}
T_{1} P & =\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \\
& =(0.2)(0.2) \\
& =4.0 \cdot 10^{-2}
\end{aligned}
$$

15. Determine the maximum $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$ that can exist in 1.0 L of $0.0010 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ without forming a precipitate.
A. $2.6 \times 10^{-12} \mathrm{M}$
$\mathrm{BaCO}_{3}(\mathrm{~s}) \mathrm{K}_{3 p}=2.6 \cdot 10^{-9}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]$
C. $2.6 \times 10^{-6} \mathrm{M}$
B. $2.6 \times 10^{-9} \mathrm{M}$
D. $5.1 \times 10^{-5} \mathrm{M}$

$$
\begin{aligned}
& 2.6 \cdot 10^{-9}=(0.0010)\left[\mathrm{CO}_{3}^{2-}\right] \\
& 2.6 \cdot 10^{-6} \mathrm{M}=\left[\mathrm{CO}_{3}^{2-}\right]
\end{aligned}
$$

16. When a student mixes equal volumes of $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ and $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$,
A. ho precipitate forms.
C. a precipitate of only NaOH forms.
B. a precipitate of only Sr forms.
D. precipitates of both NaOH and SrS form.

Both SirS \& NaOH are Soluble

17. A student wishes to identify an unknown cation in a solution. A precipitate does not form with the addition of $\mathrm{SO}_{4}{ }^{2-}$, but does form with the addition of S^{2-}. Which of the following is the unknown cation?
A. Ag^{+}
B. Mg^{2+}
C. Ca^{2+}
(D.) Cu^{2+}
18. The solubility of MnS is $4.8 \times 10^{-7} \mathrm{M}$, at $25^{\circ} \mathrm{C}$. The $\mathrm{K}_{\text {sp }}$ value is
(A.) 2.3×10^{-13}
B. 4.8×10^{-7}
C. 9.6×10^{-7}
D. 6.9×10^{-4}

$$
\begin{aligned}
K_{s p} & =\left[M^{2+}\right]\left[s^{2-}\right] \\
& =(4.8 \cdot 10-7)\left(4.8 \cdot 10^{-7}\right)=2.3 \cdot 10^{-13}
\end{aligned}
$$

19. A 200.0 mL solution contains 0.050 mol of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. The $\left[\mathrm{NO}_{3}-\right]$ is:
A. 0.050 M
B. 0.10 M
C. 0.25 M
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{NO}_{3}-$
$0.25 \mathrm{M} \quad 0.50 \mathrm{M}$
20. Consider the following solubility equilibrium:
$\mathrm{MgCO}_{3(s) \leftrightharpoons \mathrm{Mg}^{2+}}{ }_{(\text {aq })}+\mathrm{C}_{3^{2-}}{ }^{\text {(aq) }}$
1:2
The addition of which of the following substances would decrease the solubility of MgCO_{3} ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NaCl
C. NaOH
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
21. In a solubility equilibrium, the:
A.) rate of dissolving equals the rate of crystallization.
B. neither dissolving nor crystallization are occurring.
C. concentration of solute and solvent are always equal.
D. mass of dissolved solute is greater than the mass of the solution.
22. Which of the following solutions would have $\left[\mathrm{Fe}^{3+}\right]=0.020 \mathrm{M}$?
A. 0.40 L of $0.050 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
B. 0.80 L of $0.020 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
C. 0.50 L of $0.040 \mathrm{M} \mathrm{FeC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$
D.) 0.50 L of $0.010 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$
$\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \rightleftharpoons 2 \mathrm{Fe}^{3+4}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{1-}$
23. Which of the following substances has the lowest solubility?
A. BiS
B. CuS
C. HeS
D. ZnS
smallest K sp

24. The complete ionic equation for the reaction between MgS and $\mathrm{Sr}(\mathrm{OH})_{2}$ is:
A. $\mathrm{MgS}_{(\mathrm{aq})}+\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{SrS}_{(\mathrm{s})}$
B. $\mathrm{MgS}_{(\mathrm{aq})}+\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}+\mathrm{SrS}_{(\mathrm{aq})}$
C. $\mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}$ (aq) $+\mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{SrS}_{(\mathrm{s})}$
D. $\mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})+\mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{Sr}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}$ (aq)
25. Consider the following equilibrium:

$$
\mathrm{m}: \xrightarrow{\mathrm{Fe}(\mathrm{OH})_{2(\mathrm{~s})} \leftrightharpoons \underset{\mathrm{F}^{2+}}{\text { (aq) }}+2 \mathrm{OH}^{-}(\mathrm{aq})}
$$

Which of the following will cause the equilibrium to shift to the right?
A. adding KOH
C. adding $\mathrm{Fe}(\mathrm{OH})_{2}$
(B.) adding $\mathrm{Na}_{2} \mathrm{~S}$
$\mathrm{FeS}(s) \mathrm{ppt}$
26. Consider the following experiment:

$$
\begin{gathered}
K_{s p}=5.0 \cdot 10^{-9}=s^{2} \\
7.1 \cdot 10^{-5} \mathrm{~m}=s
\end{gathered}
$$

27. A compound has a solubility of $7.1 \times 10^{-5} \mathrm{M}$ g $25^{\circ} \mathrm{C}$. The compound is:
A. GuS
B. AgBr
C. CaCO_{3}
D. CaSO_{4}
28. In a saturated solution of KNO_{3}, the rate of crystallization is:
A. equal to zero.
C. less than the rate of dissolving.
B. equal to the rate of dissolving.
D. greater than the rate of dissolving.
29. At a certain temperature, the solubility of BaF_{2} is $7.4 \times 10^{-3} \mathrm{M}$. The $\mathrm{K}_{\text {sp }}$ of BaF_{2} is:
A.) 1.6×10^{-6}
B. 5.5×10^{-5}
C. 1.1×10^{-4}
D. 7.4×10^{-3}

$$
\begin{aligned}
K_{s p} & =\left[B a^{2+}\right][F]^{2} \\
& =(s)(2 s)^{2} \\
& =4 s^{3} \\
& =4\left(7.4 \cdot 10^{-3}\right)^{3}
\end{aligned}
$$

30. What is the maximum [Sr^{2+}] that can exist in a solution of $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
A. $3.4 \times 10^{-7} \mathrm{M} \quad \mathrm{SrSO}_{4} \quad \mathrm{~K}_{s p}=3.4 \cdot 10^{-7}$
C. $1.7 \times 10^{-6} \mathrm{M}$
B. $3.4 \times 10^{-6} \mathrm{M}$ $3.4 \cdot 10^{-7}=\left[5 r^{2+}\right](0.10)$
D. $5.8 \times 10^{-4} \mathrm{M}$
31. A student could precipitate silver chloride from a saturated solution of silver chloride by adding
A. water.
C. sodium nitrate.
B. sodium iodide.
D. sodium chloride.

A. no precipitate forms.
B. a precipitate of only AgBr forms.
C. a precipitate of only $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ forms.
D. precipitates of both AgBr and $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ form.

Agar K sp $=5.4 \cdot 10^{-13}$

$$
T_{1} p>K_{s p}
$$

33. Consider the following solubility equilibrium:

$$
\mathrm{PbCl}_{2(\mathrm{~s})} \leftrightharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2{\underset{\mathrm{q}}{1}}_{\text {-(aq) }}
$$

A student adds NaCl to a saturated solution of PbCl_{2}. When equilibrium is reestablished, how have the concentrations changed from the original equilibrium?
A. $\left[\mathrm{Pb}^{2+}\right]$ and $[\mathrm{Cl}-]$ both increased.
B. $\left[\mathrm{Pb}^{2+}\right]$ and $[\mathrm{Cl}-]$ both decreased.
C. $\left[\mathrm{Pb}^{2+}\right]$ decreased and [Cl-] increased.
D. $\left[\mathrm{Pb}^{2+}\right]$ increased and [Cl-] decreased
34. Solid $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is added to water to form a saturated solution. The $\mathrm{K}_{\text {sp }}$ value can be calculated by
A. $\mathrm{K}_{s p}=\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{2}$

$$
\underset{25}{ } \mathrm{Ag}_{2} \mathrm{CrO}_{4} \stackrel{2 \mathrm{Ag}^{+}}{\rightleftharpoons}+\underset{5}{\mathrm{CrO}_{4}^{2-}}
$$

B. $\mathrm{K}_{s p}=\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{3}$
C. $\mathrm{K}_{s p}=\frac{\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{3}}{2}$

$$
\begin{aligned}
K_{s p} & =(2 s)^{2}(s) \\
& =4 s^{3}
\end{aligned}
$$

(D. $\mathrm{K}_{s p}=4\left[\mathrm{CrO}_{4}{ }^{2-}\right]^{3}$
II. Short Answer:

1. A chemistry stockroom contains a bottle of 12.0 M HCl . A teacher needs to make up 800.0 mL of a 3.0 M solution of HCl . What volume of the stock solution (12.0 M) does the teacher need to use?

$$
\begin{aligned}
C_{1} V_{1} & =C_{2} V_{2} \\
(12.0 M) & \left(V_{1}\right)=(3.0 \mathrm{M})(800.0 \mathrm{~mL}) \\
V_{1} & =200.0 \mathrm{~mL}
\end{aligned}
$$

2. A student has 600.0 mL of a 0.30 M solution of HNO_{3}. How much water must she add in order to make it a 0.15 M solution?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& (0.30 \mathrm{M})(600.0 \mathrm{~mL})=(0.15 \mathrm{~m})\left(v_{2}\right) \\
& V_{2}=1200 . \mathrm{mL} \\
& v_{2}-v_{1}=\mathrm{mL} \text { of watertaadd } \\
& 1200-600.0=600.0 \mathrm{~mL} \text { must be added }
\end{aligned}
$$

3. An aqueous solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with an aqueous solution of KBr and a precipitate forms.
a. Write a balanced formula equation for this reaction. (Include all subscripts.)

$$
\left.\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{a}_{9}\right)+2 \mathrm{KBr}_{(a q}\right) \rightleftharpoons \mathrm{PbBr}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3\left(\mathrm{a}_{4}\right)}
$$

b. Write a balanced total ionic equation for this reaction. (Include all subscripts.)

$$
\mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{~K}_{(\mathrm{aq})}^{+}+2 \mathrm{Br}_{(\mathrm{aq})}^{-} \rightleftharpoons \mathrm{PbBr}_{2(s)}+2 \mathrm{~K}_{(a)}^{+}+2 \mathrm{NO}_{3}^{-}(q)
$$

c. Write a balanced net ionic equation for this reaction. (Include all subscripts.)

$$
\mathrm{Pb}_{(\mathrm{aq})}^{2+}+2 \mathrm{Br}_{(a q)}^{-} \rightleftharpoons \mathrm{PbBr}_{2(s)}
$$

4. Devise a procedure to separate the ions $\mathrm{Ba}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ag}^{+}$
one possibility:

5. Calculate the molar solubility of the following solutions:
a. BaCO_{3}

$$
\begin{aligned}
& \mathrm{BaCO}_{3} \rightleftharpoons \mathrm{Ba}_{\mathrm{s}}^{2+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{K}_{\mathrm{sp}}=\sqrt{2.6} \cdot 10^{-9}=\sqrt{\mathrm{s}^{2}} \\
& s=5.1 \cdot 10^{-5 \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } \begin{array}{l}
\mathrm{Mg}(\mathrm{OH})_{2} \\
\mathrm{Mg}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Mg}_{\mathrm{S}}^{2+}+\mathrm{ZSH}_{\mathrm{s}} \\
\mathrm{~K} \mathrm{Hp}^{-}=5.6 \cdot 10^{-12}=4 \mathrm{~s}^{3} \\
\mathrm{~s}=\sqrt[3]{\frac{5.6 \cdot 10^{-12}}{4}}=1.1 \cdot 10^{-4} \mathrm{M}
\end{array}
\end{aligned}
$$

6. Will a precipitate form if 100 mL of $1.0 \times 10^{-3} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution is added to 100.0 mL of 2.0 x $10^{-3} \mathrm{M} \mathrm{MgSO}_{4}$ solution? Show all calculations and include theTrial Kip.

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a r)}+\mathrm{MgSO}_{4}\left(\mathrm{a}_{1}\right) \geqslant \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(a)}+\mathrm{PbSO}_{4}(3) \\
& {\left[\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right]} \\
& C_{1} v_{1}=C_{2} v_{2} \\
& {\left[\mathrm{MgSO}_{4}\right]} \\
& C_{1} v_{1}-C_{2} v_{2} \\
& \left(1.0 \cdot 10^{-3}\right)(100.0)=C_{2}(200.0) \\
& (2.0 .10-3)(100.0)=C_{2}(200.0) \\
& C_{2}=5 \cdot 0 \cdot 10^{-4 M}=\left[\mathrm{Pb}^{2+}\right] \\
& c_{2}=1.0 \cdot 10^{-3} \mathrm{M}=\left[50_{4}{ }^{2-}\right] \\
& \mathrm{PbSO}_{4} \geqslant \mathrm{~Pb}^{2+}+\mathrm{SO}_{4}^{2-} \\
& T_{1} P=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right] \\
& =\left(5.0 \cdot 10^{-4}\right)\left(1.0 .10^{-3}\right) \\
& =5.0 \cdot 10^{-7} \\
& \begin{array}{l}
\text { Actual } \\
\text { isp }
\end{array}=1.8 \cdot 10^{-8} \\
& T I P>K_{s p} \\
& \text { pct well form }
\end{aligned}
$$

