Chemistry 12

Solubility Equilibrium Review Package

Name: Date: Block:

Multiple Choice

1	Which one	of the	following	would form	an ionic	solution	when	dissolved	lin	water?
١.	WILL OLD	OI IIIE	TOHOWITIG	woold lollli	anionic	301011011	WHEH	CISSOIVEC	1111	waieis

A. I₂

B. CH₃OH

C. Ca(NO₃)₂

D. C12H22O11

(Pg. 4 databooklet)

2. In a saturated solution of Zn(OH)2, the [Zn2+] is:

A. less than 0.10 M

C. more than 0.10 M, but less than 1.0 M

B. more than 10.0 M. D. more than 1.0 M. but less than 10.0 M.

3. The complete ionic equation for the reaction between MgCl2 and AgNO3 is

A. $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$

B. $2AgNO_{3(aq)} + MgCl_{2(aq)} \rightarrow 2AgCl_{(s)} + Mg(NO_3)_{2(aq)}$

C. $2Ag^{+}_{(aq)} + Mg^{2+}_{(aq)} + 2NO_{3}^{-}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow MgCl_{2(s)} + 2Ag^{+}_{(aq)} + 2NO_{3}^{-}_{(aq)}$

D. $2Ag^{+}_{(aq)} + Mg^{2+}_{(aq)} + 2NO_{3^{-}_{(aq)}} + 2CI_{(aq)} \rightarrow 2AgCI_{(s)} + Mg^{2+}_{(aq)} + 2NO_{3^{-}_{(aq)}}$

4. Which of the following would precipitate out both Ca2+ and Mg2+?

C. SO₄²-

D. CH₃COO-

low solubility

5. The $[SO_4^{2-}]$ in a saturated solution of PbSO₄ is:

A. 1.2 x 10⁻¹⁶ M

B. $5.0 \times 10^{-9} M$

C. 1.1 x 10⁻⁸M

D. 1.3 x 10⁻⁴M

 $PbSo_{4} = Pb^{24} + So_{4}^{2}$ S S $I.3 \cdot 10^{-9} = S^{2}$ $I.3 \cdot 10^{-4} = S = [So_{4}^{2}]$

6. Which one of the following salts is soluble?

A. BaSO₄

B. CaCO₃

D. Fe(OH)₂

7. The compound Ag₂S has a solubility of 1.3 x 10⁻⁴ M at 25°C. The K_{sp} for this compound is

A. 2.2 x10 ⁻¹²

B. 8.8 x10⁻¹²

C. 1.7x10⁻⁸

D. 3.4 x 10⁻⁸

 $Esp = (2s)^{2}(s)$ = 43⁵ = 4(1.3.10-4)3

8. Which of the following could be used to express solubility?

A. mol

B. M/s

C.)g/mL

D. mL/min

= 8.8.10-18

9. When 100.0 mL of a saturated solution of BaF2 is heated and all the water is evaporated, 3.6×10^{-4} mol of solute remains. The solubility of BaF₂ is:

A. $1.9 \times 10^{-10} M$

B. 1.3×10^{-5} M

 $C. 3.6 \times 10^{-4} M$

D. 3.6×10^{-3} M

19. A 200.0mL solution contains 0.050 mol of Ba(NO₃)₂. The [NO₃-] is:

A. 0.050 M B. 0.10 M C. 0.25M D. 0.50 M $Ba(NO_3)_2 \rightleftharpoons Ba^{2+} + 2NO_3^{-}$ 0.25M 30.50M

20. Consider the following solubility equilibrium:

 $MgCO_{3(s)} = Mg^{2+}(aq) + CO_{3}^{2-}(aq)$

The addition of which of the following substances would decrease the solubility of MgCO₃?

A. H₂O

B. NaCl

C. NaOH

D. Na₂CO₃

- 21. In a solubility equilibrium, the:
 - A.) ate of dissolving equals the rate of crystallization.
 - B. neither dissolving nor crystallization are occurring.
 - C. concentration of solute and solvent are always equal.
 - D. mass of dissolved solute is greater than the mass of the solution.
- 22. Which of the following solutions would have [Fe³⁺]= 0.020M?

A. 0.40 L of 0.050M Fe(NO₃)₃

C. 0.50 L of 0.040M FeC₆H₅O₇

B. 0.80 L of 0.020M Fe₂(SO₄)₃

D.0.50L of 0.010M Fe₂(C₂O₄)₃

23. Which of the following substances has the lowest solubility?

A. BaS

B.)CuS

C. FeS

D. ZnS

Smallest Ksp

Fez ($C_2 O_4$) = $2 Fe^{34} + 3 C_2 O_4^{4}$ 0.010 M 0.020 M 1:2

24. The complete ionic equation for the reaction between MgS and Sr(OH)2 is:

A. $MgS_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + SrS_{(s)}$

B. $MgS_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + SrS_{(aq)}$

C. $Mg^{2+}(aq) + S^{2-}(aq) + Sr^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg^{2+}(aq) + 2OH^{-}(aq) + SrS(s)$

D.) $Mg^{2+}_{(aq)} + S^{2-}_{(aq)} + Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Mg(OH)_{2(s)} + Sr^{2+}_{(aq)} + S^{2-}_{(aq)}$

25. Consider the following equilibrium:

Which of the following will cause the equilibrium to shift to the right?

A. adding KOH

B. adding Na₂S

Fe S (s) pit

C. adding Fe(OH)₂ D. adding Fe(NO₃)₂

26. Consider the following experiment:

The unknown solution could contain

A.0.20M OH-B. 0.20M NO₃-1 C. 0.20M PO₄3-D. 0.20M SO₄2-

$K_{SP} = 5.0 \cdot 10^{-9} = 5^{2}$	i
7.1.10-5M=5	

- 27. A compound has a solubility of 7.1 x 10⁻⁵M at 25°C. The compound is:
 - A. CuS
- B. AaBr
- C. CaCO₃
- D. CaSO₄
- 28. In a saturated solution of KNO₃, the rate of crystallization is:
 - A. equal to zero.

- C. less than the rate of dissolving.
- B. equal to the rate of dissolving.
- D. areater than the rate of dissolving.
- 29. At a certain temperature, the solubility of BaF₂ is 7. 4×10^{-3} M. The K_{sp} of BaF₂ is:

BaF₂ is:
D. 7.
$$4 \times 10^{-3}$$
 = $(3)(23)^{2}$
= $(5)^{2}$
= $(5)^{2}$
= $(5)^{2}$

30. What is the maximum [Sr2+] that can exist in a solution of 0.10 M Na2SO4?

A. 3.
$$4 \times 10^{-7}$$
 M

SrSou Ksp = 3.4 · 10⁻⁷ C. 1. 7×10^{-6} M

B. 3. 4×10^{-6} M

3.4 · 10⁻⁷ = [Sr⁴⁺] (0.10) D. 5.8 × 10⁻⁴ M

- 31. A student could precipitate silver chloride from a saturated solution of silver chloride by adding
 - A. water.

C. sodium nitrate.

 $Ag_2CrO_4 \rightleftharpoons 2Ag^4 + CrO_4^2$ 25 5

B. sodium iodide.

- D. sodium chloride.
- 32. When equal volumes of 0.20M SrBr2 and 0.20M AgNO3 are combined,
 - A. no precipitate forms.
 - B) a precipitate of only AgBr forms.
 - C. a precipitate of only $Sr(NO_3)_2$ forms.
 - D. precipitates of both AgBr and Sr (NO₃)₂ form.

33. Consider the following solubility equilibrium:

PbCl_{2(s)}
$$\Rightarrow$$
 Pb²⁺_(aq) + 2Cl-_(aq)

A student adds NaCl to a saturated solution of PbCl₂. When equilibrium is reestablished, how have the concentrations changed from the original equilibrium?

- A. [Pb²⁺] and [Cl-] both increased.
- B. $[Pb^{2+}]$ and [Cl-] both decreased.
- C. [Pb²⁺] decreased and [Cl-] increased.
 - D. [Pb²⁺] increased and [Cl-] decreased
- 34. Solid Ag₂CrO₄ is added to water to form a saturated solution. The K_{sp} value can be calculated by

A.
$$K_{sp} = \left[\text{CrO}_4^{2-} \right]^2$$

B.
$$K_{sp} = \left[\text{CrO}_4^{2-}\right]^3$$

C.
$$K_{sp} = \frac{\left[\text{CrO}_4^{\ 2^-}\right]^3}{2}$$

$$x_{sp} = \frac{\left[\text{CrO}_{4}^{2-1}\right]^{3}}{2}$$

$$x_{sp} = \frac{\left[\text{CrO}_{4}^{2-1}\right]^{3}}{2}$$

$$= 45^{3}$$

$$O.$$
 $K_{sp} = 4[CrO_4^{2-}]^3$

II. Short Answer:

 A chemistry stockroom contains a bottle of 12.0 M HCl. A teacher needs to make up 800.0 mL of a 3.0 M solution of HCl. What volume of the stock solution (12.0 M) does the teacher need to use?

$$C_1V_1 = C_2V_2$$

 $(12.0M)(V_1) = (3.0M)(800.0ML)$
 $V_1 = 200.0ML$

2. A student has 600.0 mL of a 0.30 M solution of HNO3. How much water must she add in order to make it a 0.15 M solution?

$$C_1V_1 = C_2V_2$$

 $(0.30M)(600.0DL) = (0.15M)(V_2)$
 $V_2 = 1200.ML$
 $V_2 - V_1 = ML$ of water to add
 $1200 - 600.0 = 600.0 ML$ must be added

- 3. An aqueous solution of Pb(NO₃)₂ is mixed with an aqueous solution of KBr and a precipitate forms.
 - a. Write a balanced formula equation for this reaction. (Include all subscripts.)

b. Write a balanced total ionic equation for this reaction. (Include all subscripts.)

c. Write a balanced net ionic equation for this reaction. (Include all subscripts.)

4. Devise a procedure to separate the ions Ba²⁺, Mg²⁺, Ag⁺,

- 5. Calculate the molar solubility of the following solutions:
 - a. BaCO₃

Bacos
$$\rightleftharpoons$$
 Ba²⁺ + Cos²⁻
S = 5.1.10-5 M

$$K_{SP} = 5.6 \cdot 10^{-12} = U_{S}^{3}$$

$$S = 3 \int \frac{5.6 \cdot 10^{-12}}{4} = \boxed{1.1 \cdot 10^{-4} M}$$

6. Will a precipitate form if $100 \text{ mL of } 1.0 \times 10^{-3} \text{ M Pb(NO}_3)_2$ solution is added to $100.0 \text{ mL of } 2.0 \times 10^{-3} \text{ M MgSO}_4$ solution? Show all calculations and include the Trial Ksp.

[MS204]

C.V. = CzUz

 $(2.0.10^{-3})(100.0) = C_2(200.0)$

C2 = 1.0.10-3M = [5042-]