Stoichiometry I, II, \& III Review

Name:
Date:
Block:

Show all steps and calculations in the space provided below.

1. Consider the following reaction:

$$
\ldots \mathrm{CuSO}_{4}+\ldots \mathrm{Mg} \rightarrow \mathrm{MgSO}_{4}+\mathrm{C}
$$

a. Predict the products and balance the chemical reaction
b. What is the mole ratio between magnesium and copper?
I mol mg: I mol cu
c. If 12.7 g of magnesium reacted, how many grams of copper were produced?
d. What volume of 1.72 M copper (II) sulphate was needed for this reaction?
2. Consider the following reaction that occurs at STP:

$$
\ldots \mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a. What is the mole ratio between nitric acid and water?

$$
4 \mathrm{~mol} \mathrm{HNO}_{3}: 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

b. If 5.0 g of copper reacted, how many liters of nitrogen dioxide gas were produced? - At STP

$$
5.0 \mathrm{gcu} \times \frac{1 \mathrm{~mol} \mathrm{cu}}{63.55 \mathrm{gcv}} \times \frac{2 \mathrm{~mol}_{\mathrm{NO}_{2}}}{1 \mathrm{molcs}} \times \frac{22.4 \mathrm{~L} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{NO}_{2}}=3.5 \mathrm{LNO}_{2}
$$

c. How many grams of water were produced?

$$
5.0 \mathrm{gcu} \times \frac{1 \mathrm{molcu}}{63.5 \mathrm{~g} \mathrm{Cu}} \times \frac{2 \mathrm{~mol} \mathrm{HzO}}{1 \mathrm{~mol} \mathrm{cu}} \times \frac{18.02 \mathrm{~g} \mathrm{HzO}}{1 \mathrm{~mol} \mathrm{HzO}^{2}}=2.8 \mathrm{~g} \mathrm{HzO}^{2}
$$

d. How many molecules of copper (II) nitrate were produced?

$$
5.0 \mathrm{~g}_{\mathrm{cu}} \times \frac{1 \mathrm{~mol} \mathrm{cu}}{63.55 \mathrm{gcu}} \times \frac{1 \mathrm{~mol} \mathrm{~N}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~mol} \mathrm{cu}} \times \frac{6.022 \times 10^{23} \mathrm{molechles}^{\mathrm{cu}\left(\mathrm{NO}_{3}\right)_{2}}}{1 \mathrm{~mol} \mathrm{cu}\left(\mathrm{NO}_{3}\right)_{2}}=\frac{4.7 \times 10^{22} \text { molecules }}{\mathrm{cu}\left(\mathrm{NO}_{3}\right)_{2}}
$$

3. Consider the following reaction: copper (II) nitrate reacts with sodium hydroxide to produce copper (II) hydroxide and sodium nitrate
a. Write a balanced chemical formula to describe the reaction.

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaOH} \rightarrow \quad \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaNO}_{3}
$$

b. If 0.059 g of copper (II) nitrate were used for this reaction, what mass of sodium nitrate would be produced?
c. How many mL of 0.10 M sodium hydroxide would be needed for this reaction?

$$
\begin{aligned}
& 0.059 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{\left.1 \mathrm{MOl} \mathrm{Cu(NO}_{3}\right)_{2}}{187.57 \mathrm{~g}\left(\mathrm{CNO} \mathrm{NO}_{2}\right)_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{MOl} \mathrm{CV}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~L}_{\mathrm{NaOH}}}{0.10 \mathrm{MOl} \mathrm{NaOl1}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \\
& =6.3 \mathrm{mLNaOH}
\end{aligned}
$$

d. How many atoms of hydrogen would be produced?

$$
\begin{aligned}
& \mathrm{Cu}\left(\mathrm{OH}-\mathrm{C}_{2}\right. \\
& =3.8 \times 10^{00} \mathrm{atons}+1
\end{aligned}
$$

1a. $\mathrm{MgSO}_{4}+\mathrm{Cu} 1 \mathrm{~b} .1: 1$ 1c. 33.2 g Cu 1 d. $0.304 \mathrm{LCuSO}_{4}$ 2a. $4: 2$ 2b. $3.5 \mathrm{~L} \mathrm{NO}_{2}$ 2c. $2.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ dd. 4.7 x 1022 molecules $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
Ba. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaNO}_{3} 3$ b. $0.053 \mathrm{~g} \mathrm{NaNO}_{3} 3$ c. $6.3 \mathrm{~mL} \mathrm{NaOH} 3 \mathrm{~d} .3 .8 \times 10^{20}$ atoms H

