Chemistry 11
 Stoichiometry IV

1. Limiting \& Excess Reactants

Limiting \& Excess

To make $\underline{36 \text { cookies, you require: }}$

- 6 cups of flour
- 2 cups of butter
- 3 cups of sugar

What is the balanced reaction?

How many cookies could you make if you had $\underline{5 \text { cups of flour }}$ and $\underline{3 \text { cups of butter }}$ and $\underline{2}$ cups of sugar? With 5 cups of flour...

With 3 cups of butter...

With 2 cups of sugar...

With these ingredients, how many cookies will you be making?

This is your \qquad reactant

The ingredients you have left over are:
These are your reactants in \qquad

When reactions occur, the reactants come together in proportions which do not react completely with each other, because one reactant is in \qquad . We cannot tell which reactant is in excess just by looking at their masses. We have to carry out preliminary calculations to determine the \qquad reactant.

Example 1.

16.4 g of zinc and 0.300 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed and reacted together. Hydrogen and ZnSO_{4} are produced. What volume of H_{2} gas is produced at standard temperature and pressure?
\Rightarrow What is the balanced chemical equation? What is the question asking for? What does the question give us?
\Rightarrow Calculate the L of H_{2} produced from 16.4 g of Zn .
\Rightarrow Calculate the L of H_{2} produced from 0.300 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$
\Rightarrow Which is the limiting reactant?
\Rightarrow Which is the excess reactant?
\Rightarrow How much of the excess reactant do you have left over?

Example 2.

Aluminum is burned with O_{2} to give $\mathrm{Al}_{2} \mathrm{O}_{3}$. 74.0 g of aluminum are mixed and reacted with $56.0 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}$. What mass of aluminum oxide is produced?
\Rightarrow Balanced reaction: What does the question give us? What are we looking for?
\Rightarrow Calculation using 74.0 g of Al.
\Rightarrow Calculation using $56.0 \mathrm{~g}_{\text {of }} \mathrm{O}_{2}$.
\Rightarrow What is the limiting reactant?
\Rightarrow What mass of aluminum oxide is actually produced?
\Rightarrow What is the excess reactant and how much of it is left over?

