Station 1

The balanced equation for the combustion of benzoic acid is as follows: 2 C ₇ H ₆ O ₂ + 15 O ₂ \rightarrow 14 CO ₂ + 6 H ₂ O
A 305.0 g sample of $C_7H_6O_2$ is combined with 512.0 grams of O_2 . a. Determine which reactant is in excess.

b. When this reaction is carried out, what mass of CO₂ will be produced?

c. Determine the mass of the excess reactant left over.

Station 1

The balanced equation for the combustion of benzoic acid is as follows: 2 $C_7H_6O_2 + 15 O_2 \rightarrow 14 CO_2 + 6 H_2O$

A 305.0 g sample of $C_7H_6O_2$ is combined with 512.0 grams of O_2 .

a. Determine which reactant is in excess.

- b. When this reaction is carried out, what mass of CO₂ will be produced?
- c. Determine the mass of the excess reactant left over.

Station 2

The iron present in a sample of iron ore is converted to Fe^{2+} and reacted with dichromate ion:

$$Cr_2O_7^{2-} + 6 Fe^{2+} + 14H^+ \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$$

17.6~mL of 0.125~M dichromate is required to react with 25.0~mL sample of Fe^{2+} solution.

a. What is the molarity of Fe²⁺?

b. What mass of iron is present in the 25.0 mL sample?

Station 2

The iron present in a sample of iron ore is converted to Fe^{2+} and reacted with dichromate ion:

$$Cr_2O_7^{2-} + 6 Fe^{2+} + 14H^+ \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$$

17.6 mL of 0.125 M dichromate is required to react with 25.0 mL sample of Fe^{2+} solution.

a. What is the molarity of Fe²⁺?

b. What mass of iron is present in the 25.0 mL sample?

Station 3	Station 3
The reaction between nitrogen and hydrogen produces NH_3 . a. What is the balanced equation?	The reaction between nitrogen and hydrogen produces NH_3 . a. What is the balanced equation?
b. At STP, calculate the volume of NH_3 that is produced when $145\;L$ of N_2 reacts with excess hydrogen gas.	b. At STP, calculate the volume of $NH_{\rm 3}$ that is produced when 145 L of $N_{\rm 2}$ react with excess hydrogen gas.
c. How many litror of nitrogen react with 591 Lef hydrogen at STP2	
c. How many litres of nitrogen react with 581 L of hydrogen at STP?	c. How many litres of nitrogen react with 581 L of hydrogen at STP?

Station 4

Consider the following reaction:

$$Mg + HNO_3 \rightarrow Mg(NO_3)_2 + H_2$$

a. What is the balanced equation?

b. If 6.01 g of Mg metal reacts with 8.45 g of HNO $_{\!3}$ at STP, what volume of H_2 gas is produced?

c. How much excess reactant is left over?

Station 4

Consider the following reaction:

$$Mg + HNO_3 \rightarrow Mg(NO_3)_2 + H_2$$

a. What is the balanced equation?

b. If 6.01 g of Mg metal reacts with 8.45 g of HNO $_3$ at STP, what volume of H $_2$ gas is produced?

c. How much excess reactant is left over?