Station 1

The balanced equation for the combustion of benzoic acid is as follows: $2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}+15 \mathrm{O}_{2} \rightarrow 14 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

A 305.0 g sample of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ is combined with 512.0 grams of O_{2}
a. Determine which reactant is in excess.
b. When this reaction is carried out, what mass of CO_{2} will be produced?
c. Determine the mass of the excess reactant left over.

The balanced equation for the combustion of benzoic acid is as follows: $2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}+15 \mathrm{O}_{2} \rightarrow 14 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

A 305.0 g sample of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ is combined with 512.0 grams of O_{2}
a. Determine which reactant is in excess.
b. When this reaction is carried out, what mass of CO_{2} will be produced?
c. Determine the mass of the excess reactant left over.

Station 2

The iron present in a sample of iron ore is converted to Fe^{2+} and reacted with dichromate ion:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

17.6 mL of 0.125 M dichromate is required to react with 25.0 mL sample of Fe^{2+} solution.
a. What is the molarity of Fe^{2+} ?
b. What mass of iron is present in the 25.0 mL sample?

Station 2

The iron present in a sample of iron ore is converted to Fe^{2+} and reacted with dichromate ion:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

17.6 mL of 0.125 M dichromate is required to react with 25.0 mL sample of Fe^{2+} solution.
a. What is the molarity of Fe^{2+} ?
b. What mass of iron is present in the 25.0 mL sample?

Station 3

The reaction between nitrogen and hydrogen produces NH_{3}.
a. What is the balanced equation?
b. At STP, calculate the volume of NH_{3} that is produced when 145 L of N_{2} reacts with excess hydrogen gas.
c. How many litres of nitrogen react with 581 L of hydrogen at STP?

The reaction between nitrogen and hydrogen produces NH_{3}.
a. What is the balanced equation?
b. At STP, calculate the volume of NH_{3} that is produced when 145 L of N_{2} reacts with excess hydrogen gas.
c. How many litres of nitrogen react with 581 L of hydrogen at STP?

Station 4

Consider the following reaction:

$$
\mathrm{Mg}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}
$$

a. What is the balanced equation?
b. If 6.01 g of Mg metal reacts with 8.45 g of HNO_{3} at STP , what volume of H_{2} gas is produced?
c. How much excess reactant is left over?
c. How much excess reactant is left over?

