Chemistry 11
Limiting \& Excess Reactants

Name:
Date:
key

1. Consider the following reaction: $\underline{5} \mathrm{C}+\underline{2} \mathrm{SO}_{2} \rightarrow \ldots \mathrm{CS}_{2}+\underline{4} \mathrm{CO}$
a. What mass of CS_{2} is produced when 17.5 g of C are reacted with 39.5 g of SO_{2} ?

$$
\begin{aligned}
& 17.5 \mathrm{gc}_{c} \times \frac{1 \mathrm{molc}}{12.01 \mathrm{gc}} \times \frac{1 \mathrm{~mol} \mathrm{cs}_{2}}{5 \mathrm{molc}} \times \frac{76.15 \mathrm{gcs}_{2}}{1 \mathrm{molcs}_{2}}=22.2 \mathrm{gcs}_{2} \leftarrow \text { limiting } \\
& 39.5 \mathrm{~g} \mathrm{sic}_{2} \times \frac{1 \mathrm{molsco}_{2}}{64.07 \mathrm{gsO}_{2}} \times \frac{1 \mathrm{molcs}_{2}}{2 \mathrm{~mol} \mathrm{soz}_{2}} \times \frac{76.15 \mathrm{gcs}_{2}}{1 \mathrm{~mol} \mathrm{cs}_{2}}=23.5 \mathrm{gcs}_{2}
\end{aligned}
$$

b. What mass of the excess reactant will be left over?
2. Consider the following reaction: $\underline{2} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\underline{b} \mathrm{SiO}_{2}+\underline{10} \mathrm{C} \rightarrow \ldots \mathrm{P}_{4}+\underline{b} \mathrm{CaSiO}_{3}+\underline{10} \mathrm{CO}$
a. What mass of P_{4} is produced when 41.5 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, 26.5 \mathrm{~g}$ of SiO_{2} and 7.80 g of C are reacted?
b. How many grams of each excess reactant will remain unreacted?

$$
\begin{aligned}
& 7.80 \mathrm{gc}_{c} \times \frac{1 \mathrm{molc}_{10}}{12.01 \mathrm{gc}} \times \frac{2 \mathrm{~mol} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{10 \mathrm{molc}_{2}} \times \frac{310.18 \mathrm{~g} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{1 \mathrm{~mol} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=40.3 \mathrm{~g} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& 41.5 \mathrm{gCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}-40.3 \mathrm{~g} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}=1.2 \mathrm{~g} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

$$
7.80 \mathrm{gc} \times \frac{1 \mathrm{~mol}_{\mathrm{c}}}{12.01 \mathrm{gc}} \times \frac{6 \mathrm{molsic}_{2}}{10 \mathrm{molc}} \times \frac{60.09 \mathrm{gsiO}_{2}}{1 \mathrm{molsis}_{2}}=23.4 \mathrm{~g} \mathrm{siO}_{2}
$$

$$
26.5 \mathrm{gsioz}_{2}-23.4 \mathrm{gs:0}_{2}=3 . \mathrm{Ig}_{\mathrm{SiO}_{2}}
$$

$$
\begin{aligned}
& 41.5 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{1 \mathrm{~mol}_{2}\left(\mathrm{CO}_{4}\right)_{2}}{310.18 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}} \times \frac{1 \mathrm{~mol}_{4}}{2 \mathrm{~mol} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}} \times \frac{123.88 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol}_{4}}=8.29 \mathrm{~g} \mathrm{P} \\
& 26.5 \mathrm{~g} \mathrm{SiO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{sio}_{2}}{60.09 \mathrm{~g} \mathrm{siO}_{2}} \times \frac{1 \mathrm{molp}_{4}}{6 \mathrm{molsiO}_{2}} \times \frac{123.88 \mathrm{~g} \mathrm{P}}{4} 1 \mathrm{~mol}_{4} \quad=9.11 \mathrm{~g} \mathrm{P} \\
& 7.80 \mathrm{gc} \times \frac{1 \mathrm{molc}_{\mathrm{c}}}{12.01 \mathrm{gc}} \times \frac{1 \mathrm{~mol}_{4}}{10 \mathrm{molc}} \times \frac{123.88 \mathrm{~g} \mathrm{P}_{4}}{1 \mathrm{~mol}_{4}}=8.05 \mathrm{~g} \mathrm{P}_{4} t \text { limiting }
\end{aligned}
$$

$$
\begin{aligned}
& 17.5 \mathrm{gc} \times \frac{1 \mathrm{molc}_{\mathrm{c}}}{12.01 \mathrm{gc}} \times \frac{2 \mathrm{~mol} \mathrm{soz}_{2}}{5 \mathrm{molc}} \times \frac{64.07 \mathrm{~g} \mathrm{soz}_{2}}{1 \mathrm{~mol} \mathrm{soz}_{2}}=37.3 \mathrm{~g} \mathrm{ssi}_{2} \\
& \text { Have - Used }=\text { Excess } \\
& 39.5 \mathrm{~g} \mathrm{SO}_{2}-37.3 \mathrm{~g} \mathrm{SO}_{2}=2.2 \mathrm{~g} \mathrm{SO}_{2}
\end{aligned}
$$

