Chemistry 11 Percent Purity

Name: Date: Block:

1. Consider the reaction of magnesium hydroxide with phosphoric acid:

$$\underline{Mg(OH)_2 + \underline{H_3PO_4}} \xrightarrow{} \underline{Mg_3(PO_4)_2 + \underline{H_2O}}$$

Calculate the mass of $Mg(OH)_2$ needed to make 127 g of $Mg_3(PO_4)_2$. Assume the $Mg(OH)_2$ is 88.5% pure.

2. Consider the reaction:

 $\underline{KO_2} + \underline{CO_2} \rightarrow \underline{K_2CO_3} + \underline{O_2}$

a. A 30.0 g sample of KO_2 is 59.3% pure. What mass of K_2CO_3 can the sample produce?

b. Another sample of KO_2 with a mass of 150.0 g is reacted so as to produce 89.7 g of K_2CO_3 . What is the percentage purity of KO_2 ?

3. If 72.1 g of FeO produces 12.9 g of pure Fe according to the reaction:

 $\underline{\qquad} FeO + \underline{\qquad} C + \underline{\qquad} O_2 \rightarrow \underline{\qquad} Fe + \underline{\qquad} CO_2$

What is the percentage purity of the FeO used?

Chemistry 11 Percent Yield

Name: Date: Block:

- 4. Potassium chlorate decomposes to form potassium chloride and oxygen gas.
 - a. What is the balanced reaction?
 - b. When 5.95 g of potassium chlorate decomposes, 1.45 g of oxygen gas is given off. Calculate the percentage yield of oxygen.

- 5. When 50.0 g of iron metal is reacted with copper (II) sulfate, 43.0 g of copper metal is recovered.
 - a. What is the balanced reaction?
 - b. Determine the percentage yield of copper.

6. Consider the following reaction:

 $_C_3H_8 + _O_2 \rightarrow _CO_2 + _H_2O$

32.0 g of oxygen reacts with 19.0 g of C_3H_8 . The experiment gives 2.00 g H_2O . What is the % yield?