Chemistry 11
 Stoichiometry Practice Test

1. A reaction between magnesium and chlorine takes place. Which of the following is the correct unbalanced reaction?
$\begin{array}{ll}\text { A. } & \mathrm{Mg}+\mathrm{Cl} \rightarrow \mathrm{MgCl}_{3} \\ \text { B. } & \mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2} \\ \text { C. } & \mathrm{Mg}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{3}\end{array}$
D. $\mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{Mg}_{2} \mathrm{Cl}$

B2. Complete the following reaction:
$\mathrm{Na}+\mathrm{S}_{8} \rightarrow$
A. NaS
B. $\mathrm{Na}_{2} \mathrm{~S}$
D. NaS_{2}

B3. When the following equation is balanced, what will the coefficient be for fluorine?

$$
\underline{2} \mathrm{AlCl}_{3}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{AlF}_{3}+3 \mathrm{Cl}_{2}
$$

A. $\quad 2$
C. 4
D. 5

A4. When the following equation is balanced, what will the coefficient be for chlorine?

$$
\underline{2} \mathrm{CH}_{4}+\ldots \mathrm{Cl}_{2} \rightarrow \underline{2} \mathrm{CH}_{3} \mathrm{Cl}+\ldots \mathrm{H}_{2}
$$

C5. The following unbalanced chemical equation is given

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

How many moles of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, reacts with 14 moles of oxygen?
A. 1
B. 2
C.
D. 8
6. Explain your answer to the question above:

$$
14 \mathrm{~mol}_{\mathrm{O}_{2}} \times \frac{2 \mathrm{~mol}_{2} \mathrm{CH}_{6}}{7 \mathrm{~mol} \mathrm{o}_{2}}=4 \mathrm{~mol}_{2} \mathrm{H}_{6}
$$

\qquad 7. The following chemical equation is given.

$$
2 \mathrm{Ag}^{+}+\mathrm{S}_{2} \mathrm{O}_{8} ? \rightarrow \mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}
$$

What is the ionic charge on the $\mathrm{S}_{2} \mathrm{O}_{8}$ ion?
A. $1+$
B. 1-
C. ${ }^{2+}$ 2-

B
8. A reaction between $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ and oxygen would produce:
A. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
C. A salt and water
D. Impossible to predict

Combustion!

9. Hydrochloric acid and sodium hydroxide react to produce
A. An explosion OH
B. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Neutralization!
C. A salt and water
D. Impossible to predict
\qquad 10. The equation to calculate percent purity is:
A. $\frac{\text { Impure mass }}{\text { Pure mass }}$
B. $\frac{\text { Pure mass }}{\text { Impure mass }}$
C. $\frac{\text { Excess Yield }}{\text { Limiting Yield }}$
D. $\frac{\text { Limiting Yield }}{\text { Excess Yield }}$

B11. A substance that reacts with another substance and is completely reacted and consumed is called the:
A. A theoretical reactant
B. A limiting reactant
C. An excess reactant
D. A standard reactant

A
12. Consider the following reaction:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2.0 mol of H_{2} reacts with 2.0 mol of O_{2}. What is the limiting reactant?
A. H_{2}
B. O_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. The limiting reactant does not exist
13. Show your work for the question above:
$2.0 \mathrm{~mol}\left(\mathrm{H}_{2}\right)^{x} \frac{2 \mathrm{~mol} \mathrm{H}}{2} \mathrm{O}, 2.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \leftarrow$ limiting
$2.0 \mathrm{~mol} \mathrm{o}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}{ }^{\circ}}{1 \mathrm{~mol} \mathrm{o}}=4.0 \mathrm{~mol} \mathrm{HzO}$
A 14. After completing and balancing the reaction below, the mole ratio of potassium to oxygen in the chemical equation below is:

$$
4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}
$$

A. 4 to 1
B. 4 to 2
C. 2 to 3
D. 1 to 1

C15. A sample of cobalt (II) chloride has $\overline{9} \overline{4} . \overline{0} \%$ purity. If the total sample weighs 15604 g , what is the mass of pure cobalt (II) chloride?

$$
\begin{aligned}
x=0.94 \times 15604 \mathrm{~g}=14668 \\
=14700 \mathrm{~g}
\end{aligned}
$$

D16. A sample of sodium metal has 0.200% purity. If only 13.5 g of the sample reacts, what is the total mass of the sample?

て pure
A. 0.027 g
B. 0.200 g
C. 13.5 g
$0.200 \%=\frac{13.5 \mathrm{~g}}{x} \times 100 \%$
6750 g

$$
x=\frac{13.59}{0.00200}
$$

C
17. A reaction is expected to produce 94.0 g of a product. However, only 17.0 g is recovered at the end of the experiment. What was the percent yield?
A. 5.50%
B. 17.0%
C. $180 \% 18.1 \%$
D. 94.0%
18. Briefly explain your answer to the question above:

$$
\begin{aligned}
\% \text { yield } & =\frac{\text { actual }}{\text { theoretical }} \times 100 \% \\
& =\frac{17.0 \mathrm{~g}}{94.0 \mathrm{~g}} \times 100 \%
\end{aligned}
$$

A19. A reaction is known to only produce 90.0% yield. If the reaction is predicted to produce 90.0 g , how much product will you actually produce?
A. 81.0 g
B. $\quad 90.0 \mathrm{~g}$
C. $\quad 99.9 \mathrm{~g}$
$90.0 \%=\frac{x}{90.0 \mathrm{~g}} \times 100 \%$
D. $100 . \mathrm{g}$

$$
x=0.900 \times 90.0 \mathrm{~g}
$$

1. Write a balanced equation representing the following reactions. You only need to complete three equations. Indicate which equation you would like marked by a check mark in the box next to the equation.

Lead(IV) nitride reacts with lithium sulphide.

$$
P b_{3} N_{4}+6 l_{i_{2}} S \rightarrow 3 \mathrm{Pbs}_{2}+4 \mathrm{li}_{3} N
$$

Synthesis of potassium permanganate from its elements

$$
\mathrm{K}+\mathrm{Mn}+2 \mathrm{O}_{2} \rightarrow \mathrm{KMnO}_{4}
$$

Sodium sulphate and copper(II) phosphate were produced in this reaction.

$$
2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{CuSO}_{4} \rightarrow 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

Ammonium nitride and lead(III) chlorate react together.

$$
\left(\mathrm{NH}_{4}\right)_{3} \mathrm{~N}+\mathrm{Pb}\left(\mathrm{ClO}_{3}\right)_{3} \rightarrow 3 \mathrm{NH}_{4} \mathrm{ClO}_{3}+\mathrm{PbN}
$$Iodine trifluoride, oxygen gas hydrofluoric acid (HF) react together at STP to form iodine tetrafluoride and water.

$$
4 \mathrm{IF}_{3}+\mathrm{O}_{2}+4 \mathrm{HF} \rightarrow 4 \mathrm{IF}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

2. The equation for the reaction of aluminum metal with fluorine gas is:

$$
\mathrm{Al}+\mathrm{F}_{2} \rightarrow \mathrm{AlF}_{3}
$$

a. What is the balanced chemical equation?

$$
2 \mathrm{Al}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{AlF}_{3}
$$

b. If 102.0 L of F_{2} is reacted with excess aluminum metal at STP, how much pass of the product is made?

$$
102.0 \mathrm{~L}_{\mathrm{F}_{2}} \times \frac{1 \mathrm{~mol}_{\mathrm{F}_{2}}}{22.4 \mathrm{~L}_{\mathrm{F}_{2}}} \times \frac{2 \mathrm{~mol} \mathrm{AlF}_{3}}{3 \mathrm{~mol}_{\mathrm{F}_{2}}} \times \frac{83.98 \mathrm{gAlF}_{3}}{1 \mathrm{~mol} \mathrm{AlF}_{3}}=254.9 \mathrm{gAlF}_{3}
$$

3. Consider the following balanced reaction:

$$
\underline{3} \mathrm{FeCl}_{2}+\underline{\mathrm{KNO}}_{3}+\underline{4} \mathrm{HCl} \rightarrow 3 \mathrm{FeCl}_{3}+\mathrm{NO}+\underline{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}
$$

If 56.8 g of FeCl_{2} reacted with 14.9 g of KNO_{3} and 40.0 g of HCl , find the mass of water produced

$$
\begin{aligned}
& 56.8 \mathrm{~g} \mathrm{FeCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{FeCl}_{2}}{126.75 \mathrm{~g} \mathrm{FeCl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{3 \mathrm{~mol} \mathrm{FeCl}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=5.3 \% \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \\
& 14.9 \mathrm{~g} \mathrm{KNO}_{3} \times \frac{1 \mathrm{~mol}_{\mathrm{KNO}_{3}}}{101.11 \mathrm{~g} \mathrm{KNO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol}_{\mathrm{KNO}_{3}}} \times \frac{18.02 \mathrm{~g} \mathrm{H} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=5.31 \mathrm{~g} \mathrm{H} \mathrm{O}
\end{aligned}
$$

4. 6.57 g of lead (II) acetate are reacted with 24.8 mL of 1.50 M nitrous acid $\left(\mathrm{HNO}_{2}\right)$ according to the reaction:

$$
\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{CH}_{3} \mathrm{COOH}
$$

a) What mass of lead (II) nitrite will be formed?

$$
0.0248 \mathrm{LHNO}_{2} \times \frac{1.50 \mathrm{~mol}_{\mathrm{HNO}_{2}}}{1 \mathrm{LHNO}} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{2}\right)_{2}}{2 \mathrm{mOl} \mathrm{HNO}_{2}} \times \frac{299.22 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{2}\right)_{2}}{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{2}\right)_{2}}=\frac{5.5] \mathrm{g} \mathrm{~Pb}\left(\mathrm{NO}_{2}\right)_{2}}{\text { Limiting }}
$$

b) What mass or volume of the excess reactant will be left over?

$$
\begin{aligned}
& \text { Excess = Have }- \text { Used } \\
& =6.5-9-6059=10.529 \mathrm{gbl}\left(\mathrm{CH}_{5} \mathrm{OO}\right)_{2}
\end{aligned}
$$

5. Consider the reaction: \qquad
\qquad $\mathrm{O}_{2} \rightarrow 2 \quad \mathrm{Na}_{2} \mathrm{O}$
a) Sodium has a purity of 78.2%. How many grams of the product will be formed from a 56.0 g sample of sodium?

$$
\begin{aligned}
& 78.2 \%=\frac{x}{56.0} \times 100 \% \rightarrow 0.782 \times 56.0=x \\
& x=43.8 \mathrm{~g} \text { pure } \mathrm{Na}
\end{aligned}
$$

* pure produces pure!

$$
43.8 \mathrm{gNa}_{\mathrm{Na}} \times \frac{1 \mathrm{~mol}_{\mathrm{Na}}}{22.99 \mathrm{gNa}} \times \frac{2 \mathrm{~mol}_{\mathrm{Na}_{2} \mathrm{O}}}{4 \mathrm{~mol}_{\mathrm{Na}}} \times \frac{61.98 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}}{1 \mathrm{~mol}_{\mathrm{Na}_{2} \mathrm{O}}}=59.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}
$$

b) If the reaction has a 64.7% yield, what mass of each reactant would be needed to produce 100.0 g of the product? Assume each of the reactants are pure.

$$
\begin{aligned}
& 64.7 \%=\frac{100.0 \mathrm{~g}}{x} \times 100 \% \longrightarrow x=155 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O} \text { (theoretical) } \\
& \underbrace{155 \mathrm{gNa}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{O}}{61.98 \mathrm{~g} \mathrm{Na} 2 \mathrm{O}}} \times \frac{4 \mathrm{~mol} \mathrm{Na}}{2 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{O}} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{molNa}}=115 \mathrm{~g} \mathrm{Na} \\
& \frac{1 \mathrm{~mol}_{2}}{2 \mathrm{~mol}_{\mathrm{Na}_{2} \mathrm{O}}} \times \frac{32.00 \mathrm{go}_{2}}{1 \mathrm{molo}_{2}}=40.0 \mathrm{gO}_{2}
\end{aligned}
$$

6. In an experiment, 3.44 g of 90.0% pure H_{2} and 6.25 g of 80.0% pure O_{2} are placed in a reaction vessel. The introduction of a spark causes a violent explosion that generates water.
a) What is the balanced reaction?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

b) What is the limiting reactant?

$$
\begin{aligned}
& H_{2}: \quad 90.0 \%=\frac{x}{3.44 \mathrm{~g}} \times 100 \% \quad \rightarrow \quad x=\text { pure } H_{2}=3.10 \mathrm{~g} \\
& 3.10 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.02 \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=1.53 \mathrm{~mol} \mathrm{H} \mathrm{O} \\
& 0_{2}: \quad 80.0 \%=\frac{x}{6.25 \mathrm{~g}} \times 100 \% \quad \rightarrow \quad x=\text { pure } 0_{2}=5.00 \mathrm{~g} \\
& 5.00 \mathrm{~g} \times \frac{1 \mathrm{MOLO}_{2}}{32.00 \mathrm{gO}_{2}} \times \frac{2 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{O}}}{1 \mathrm{~mol}_{2}}=0.313 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \therefore O_{2} \text { is the } \\
& \text { limiting reactant }
\end{aligned}
$$

7.

Reaction:	Is the reaction endothermic or exothermic?
1. $\mathrm{K}+\mathrm{D}+$ heat $\rightarrow \mathrm{G}$	endothermic
2. $\mathrm{U} \rightarrow \mathrm{C} \Delta \mathrm{H}=-60 \mathrm{~kJ}$	exothermic
3. $\mathrm{F}+\mathrm{A} \rightarrow \mathrm{T}+\mathrm{I} \quad \Delta \mathrm{H}=60 \mathrm{~kJ}$	endothermic
4. $\mathrm{A}+\mathrm{C} \rightarrow \mathrm{D}+45 \mathrm{~kJ}$	exothermic
5.	endothermic

