Chemistry 11 Stoichiometry Review

Name: Date: Block:

1.	Name the following compounds:	2.	Write the formulas for the following:		
	A. NaBr		A. Nitrogen monoxide		
	B. AgI		B. Sodium nitrite		
	C. HgHCO ₃		C. Calcium sulfide		
	D. CuSO ₄		D. Magnesium acetate		
	E. NO ₂		E. Oxygen difluoride		
3.	Balance the following and identify the type of react	ion			

$_$ Na ₂ O	+	H ₂ O	\rightarrow	NaOH		Ту	pe of reaction:
Cu ₂ O	+	H ₂	\rightarrow	H ₂ O	+ Cu	Ту	pe of reaction:
H ₂	+	O ₂	\rightarrow	H ₂ O		Ту	pe of reaction:
Na	+	H ₂ O	\rightarrow	NaOH	+ H ₂	Ту	pe of reaction:
HCl	+	_ Ca(OH) ₂	\rightarrow	$__$ CaCl ₂	+H_2O	Ту	pe of reaction:

4. **Complete** and **balance** the following reactions:

A. $\NH_3 \rightarrow$	D Cl ₂ + AlBr ₃ \rightarrow
B FeSO ₄ + MnI ₂ \rightarrow	E. <u>H</u> ₂ S + <u>Ca(OH)</u> ₂ \rightarrow
C NaOH + HClO ₄ \rightarrow	F BaCl ₂ + Na ₂ SO ₄ \rightarrow

5. Consider the following reaction:

$6 \operatorname{Cu} + 2 \operatorname{H}_3 \operatorname{PO}_4 \rightarrow 2 \operatorname{Cu}_3 \operatorname{PO}_4 + 3 \operatorname{H}_2$

- a. Calculate the mass of hydrogen gas produced when 84.5 g of Cu metal reacts.
- b. If 3.85 L of H_2 at STP is produced, what mass of Cu reacted?
- 6. A reaction between potassium and chlorine produced 175.0 grams of the product. How many atoms of each of potassium and chlorine were needed for the reaction?
- 7. Consider the following reaction:

 $NH_3 + \underline{NaOCl} \rightarrow \underline{N_2H_4} + \underline{NaCl} + \underline{H_2O}$

- a. If 60.0 mL of 1.5 M NaOCl reacts with excess ammonia, how many moles of NaCl will be produced?
- b. If 39.7 g of water is produced, what volume of 3.42 M NaOCl is needed?

- 8. Consider the reaction below:
 - a. What mass of CS₂ is produced when 36.5g of SO₂ is reacted with 18.5 g of C?
 - b. How much excess reactant is left over?
- 9. Consider the reaction below (Zn is a 2+ ion):

____ Zn + ____ HCl →

- a. Predict the products and balance the chemical reaction
- b. What mass of impure zinc is required to produce 955 mL of hydrogen gas at STP? The zinc has a purity of 84.5%
- 10. Consider the reaction below:

 $_{_{_{_{_{_{_{}}}}}}}$ SiO₂ + $_{_{_{_{_{}}}}}$ HF \rightarrow $_{_{_{_{_{}}}}}$ SiF₄ + $_{_{_{_{}}}}$ H₂O When 12.20 g of SiO₂ is reacted with a small excess of HF, 2.50 g of water is produced. What is the percentage yield of H₂O?

11. Consider the reaction of magnesium hydroxide with phosphoric acid:

$$3 \operatorname{Mg}(OH)_2 + 2 \operatorname{H}_3 \operatorname{PO}_4 \rightarrow \operatorname{Mg}_3(\operatorname{PO}_4)_2 + 6 \operatorname{H}_2 O$$

- a) Calculate the mass of magnesium phosphate that will be formed from the reaction of 15.0g of 92.5% magnesium hydroxide with an excess of phosphoric acid.
- b) Calculate the mass of 88.5% magnesium hydroxide needed to make 127g of $Mg_3(PO_4)_2$.
- c) Calculate the percent purity of a sample of $Mg(OH)_2$ if 2.568g of the sample reacts with 38.45 mL of pure 0.6695M H_3PO_4 .
- 12. State whether the following are endothermic or exothermic reactions:

a.
$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + 891 kJ$$

b. $C + D \rightarrow CD \quad \Delta H = -65.8 kJ$
c. $KClO_3 + 41.4 kJ \rightarrow K^+ + ClO_3^-$
d. $2 H_2 + O_2 \rightarrow 2 H_2O \quad \Delta H = -572 kJ$
e. $H_2 + Cl \rightarrow HCl + 432 kJ$
f. $Fe_2O_3 + 2 Al \rightarrow Al_2O_3 + 2 Fe \quad \Delta H = -852 kJ$
g.
h. $E + F + 437 kJ \rightarrow G + H$