Nitromethane burns according to the reaction:

$$\underline{\qquad} CH_{3}NO_{2\,(l)} + \underline{\qquad} O_{2\,(g)} \rightarrow \underline{\qquad} CO_{2\,(g)} + \underline{\qquad} H_{2}O_{\,(l)} + \underline{\qquad} N_{2\,(g)}$$

a) What mass of H_2O is produced when 0.150g of CH_3NO_2 is burned?

b) What combined volume of gas at STP is produced if 0.316g of CH_3NO_2 is burned?

c) What volume of $O_{2(g)}$ at STP is required to produce 0.250g of CO_2 ?

Not so great	Feel a bit unsure	Confident	Super confident

Nitromethane burns according to the reaction:

$$\underline{\qquad} CH_{3}NO_{2\,(l)} + \underline{\qquad} O_{2\,(g)} \rightarrow \underline{\qquad} CO_{2\,(g)} + \underline{\qquad} H_{2}O_{\,(l)} + \underline{\qquad} N_{2\,(g)}$$

a) What mass of H_2O is produced when 0.150g of CH_3NO_2 is burned?

b) What combined volume of gas at STP is produced if 0.316g of CH_3NO_2 is burned?

c) What volume of $O_{2(g)}$ at STP is required to produce 0.250g of CO_2 ?

Not so great	Feel a bit unsure	Confident	Super confident

Consider the following reaction:

$$\underline{\qquad} Ca_3(PO_4)_2 + \underline{\qquad} SiO_2 + \underline{\qquad} C \rightarrow \underline{\qquad} P_4 + \underline{\qquad} CaSiO_3 + \underline{\qquad} CO$$

a) What mass of P_4 is produced when 41.5g of $Ca_3(PO_4)_2$, 26.5 g of SiO_2 and 7.80 g of C are reacted?

b) How many grams of each excess reactant will remain unreacted?

,			
Not so great	Feel a bit unsure	Confident	Super confident

Consider the following reaction:

$$\underline{\qquad} Ca_3(PO_4)_2 + \underline{\qquad} SiO_2 + \underline{\qquad} C \rightarrow \underline{\qquad} P_4 + \underline{\qquad} CaSiO_3 + \underline{\qquad} CO$$

a) What mass of P_4 is produced when 41.5g of $Ca_3(PO_4)_2$, 26.5 g of SiO_2 and 7.80 g of C are reacted?

b) How many grams of each excess reactant will remain unreacted?

,			
Not so great	Feel a bit unsure	Confident	Super confident

A sample of high purity silicon is prepared by strongly heating a mixture of hydrogen and silicon tetrachloride in a sealed tube:

 $_$ SiCl_{4 (g)} + $_$ H_{2 (g)} \rightarrow $_$ Si (s) + $_$ HCl (g)

If exactly 1.00g of silicon is produced and the reaction is a 73.8% yield, what mass of each of SiCl_4 and H_2 must react?

Not so great	Feel a bit unsure	Confident	Super confident
<u> </u>			· · · · · · · · · · · · · · · · · · ·

A sample of high purity silicon is prepared by strongly heating a mixture of hydrogen and silicon tetrachloride in a sealed tube:

 $_$ SiCl_{4 (g)} + $_$ H_{2 (g)} \rightarrow $_$ Si (s) + $_$ HCl (g)

If exactly 1.00g of silicon is produced and the reaction is a 73.8% yield, what mass of each of SiCl_4 and H_2 must react?

Not so great	Feel a bit unsure	Confident	Super confident
<u> </u>			· · · · · · · · · · · · · · · · · · ·

What volume of $CO_{2 (g)}$ at STP can be made when 0.0250 L of $C_5H_{12 (l)}$ (density = 626.0 g/L), is reacted with 40.0 L of $O_{2 (g)}$ at STP, according to the reaction:

 $_$ C₅H_{12 (l)} + $_$ O_{2 (g)} \rightarrow $_$ CO_{2 (g)} + $_$ H₂O (l)

How much of the excess reactant will be left over?

Not so great	Feel a bit unsure	Confident	Super confident
not bo Broat	i cor a bic anbar c	Gonnaene	Buper connuente

What volume of $CO_{2 (g)}$ at STP can be made when 0.0250 L of $C_5H_{12 (l)}$ (density = 626.0 g/L), is reacted with 40.0 L of $O_{2 (g)}$ at STP, according to the reaction:

 $_$ C₅H_{12 (l)} + $_$ O_{2 (g)} \rightarrow $_$ CO_{2 (g)} + $_$ H₂O (l)

How much of the excess reactant will be left over?

Not so great	Feel a bit unsure	Confident	Super confident
not bo Broat	i cor a bic anbar c	Gonnaene	Buper connuente