Station 1
Nitromethane burns according to the reaction:

$$
4 \mathrm{CH}_{3} \mathrm{NO}_{2(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \underline{4} \mathrm{CO}_{2(\mathrm{~g})}+\underline{6} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{~N}_{2(\mathrm{~g})}
$$

a) What mass of $\mathrm{H}_{2} \mathrm{O}$ is produced when 0.150 g of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ is burned?

$$
0.150 \mathrm{~g}_{\mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{cH}_{3} \mathrm{NO}_{2}}{61.05 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.0664 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

b) What combined volume of gas at STP is produced if $0.316 \mathrm{~g} \mathrm{of} \mathrm{CH}_{3} \mathrm{NO}_{2}$ is burned?

$$
\begin{aligned}
& 0.316 \mathrm{gCH}_{3} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}}{61.05 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{4 \mathrm{~mol} \mathrm{co}}{4 \mathrm{~mol} \mathrm{cH}_{3} \mathrm{NO}_{2}} \times \frac{22.4 \mathrm{~L} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.116 \mathrm{~L} \mathrm{co}_{2} \\
& \times \frac{2 \mathrm{moln}_{2}}{4 \mathrm{molCH}_{3} \mathrm{NO}_{2}} \times \frac{22.4 \mathrm{~L}_{\mathrm{N}_{2}}}{1 \mathrm{mO}_{\mathrm{N}}}=0.0580 \mathrm{~L} \mathrm{~N}_{2} \\
& 0.116 L_{\mathrm{cO}_{2}}+0.0580 L_{\mathrm{N}_{2}}=0.174 L_{\mathrm{CO}_{2} \text { and } N_{2}}
\end{aligned}
$$

Station 2

Consider the following reaction:

$$
\underline{2} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\underline{6} \mathrm{SiO}_{2}+\underline{10} \mathrm{C} \rightarrow \ldots \mathrm{P}_{4}+\underline{6} \mathrm{CaSiO}_{3}+\underline{10} \mathrm{CO}
$$

 are reacted?

$$
\begin{aligned}
& 41.5 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{1 \mathrm{MOl} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{310.18 \mathrm{gCa}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{1 \mathrm{MOLP}}{2 \mathrm{~mol} \mathrm{ca}_{4}\left(\mathrm{PO}_{4}\right)_{2}} \times \frac{123.88 \mathrm{~g}_{\mathrm{p}_{4}}}{1 \mathrm{molp}}=8.29 \mathrm{~g} \mathrm{p}_{4}} \\
& 26.5 \mathrm{~g} \mathrm{SiO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{siO}}{60.09 \mathrm{~g} \mathrm{SiO}_{2}} \times \frac{1 \mathrm{molp}_{4}}{6 \mathrm{molsiO}_{2}} \times \frac{123.88 \mathrm{~g} \mathrm{P}_{4}}{1 \mathrm{~mol}_{4}}=9.11 \mathrm{~g} \mathrm{p} \\
& 7.80 \mathrm{gc} \times \frac{1 \mathrm{~mol} \mathrm{c}}{12.01 \mathrm{gc}} \times \frac{1 \mathrm{molp}_{4}}{10 \mathrm{molc}} \times \frac{123.88 \mathrm{~g}_{4}}{1 \mathrm{~mol} \mathrm{p}_{4}}=8.05 \mathrm{~g}_{4}
\end{aligned}
$$

b) How many grams of each excess reactant will remain unreacted?

$$
\begin{aligned}
& 7.80 \mathrm{gc} \times \frac{1 \mathrm{molc}}{12.01 \mathrm{gc}} \times \frac{2 \mathrm{~mol} \mathrm{ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{10 \mathrm{~mol} \mathrm{c}_{2}} \times \frac{310.18 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{1 \mathrm{~mol} \mathrm{caa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=40.3 \mathrm{~g} \\
& 41.5 \mathrm{~g}-40.3 \mathrm{~g}=1.2 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& 7.80 \mathrm{gcc}_{c} \times \frac{1 \mathrm{molc}}{12.01 \mathrm{gc}_{c}} \times \frac{6 \mathrm{~mol} \mathrm{siO}}{10 \mathrm{molc}} \times \frac{60.09 \mathrm{~g} \mathrm{sio}_{2}}{1 \mathrm{~mol} \mathrm{siO}}=23.4 \mathrm{~g} \mathrm{siO}_{2} \\
& 26.5 g-23.4 g=3 . \operatorname{lg~sior}
\end{aligned}
$$

Not so great	Feel a bit unsure	Confident

Station 3

A sample of high purity silicon is prepared by strongly heating a mixture of hydrogen and silicon tetrachloride in a sealed tube:

$$
\ldots \mathrm{SiCl}_{4(\mathrm{~g})}+\mathcal{L}_{\mathrm{H}_{2(\mathrm{~g})}} \rightarrow \ldots \mathrm{Si}_{(\mathrm{s})}+\underline{4} \mathrm{HCl}_{(\mathrm{g})}
$$

produced
If exactly 100 g of silicon is Required and the reaction is a 73.8% yield, what mass of each of SiCl_{4} and H_{2} must react?

$$
\begin{aligned}
& \% \text { yield }=\frac{\text { actual }}{\text { theoretical }} \times 100 \% \\
& 73.8 \%=\frac{1.00}{x} \times 100 \% \\
& \frac{1.00 \mathrm{~g}}{0.738}=x=1.36 \mathrm{~g} \mathrm{si} \text { (theoretical) } \\
& 1.3 \mathrm{og}_{\mathrm{si}} \times \frac{1 \mathrm{~mol}_{\mathrm{si}}}{28.09 \mathrm{gsi}_{\mathrm{si}}} \times \frac{1 \mathrm{~mol} \mathrm{sicl}_{4}}{1 \mathrm{molsi}_{59}} \times \frac{169.89 \mathrm{~g} \mathrm{sicl}_{4}}{1 \mathrm{molsicl}_{4}}=8.23 \mathrm{~g} \mathrm{sicl}_{4}
\end{aligned}
$$

Not so great	Feel a bit unsure	Confident

Question \#4:
What volume of $\mathrm{CO}_{2(\mathrm{~g})}$ at STP can be made when $0.0250 \mathrm{~L}^{2}$ of $\mathrm{C}_{5} \mathrm{H}_{12}$ (1) (density $=626.0 \mathrm{~g} / \mathrm{L}$), is reacted with 40.0 L of $\mathrm{O}_{2(\mathrm{~g})}$ at STP, according to the reaction:

$$
\begin{aligned}
& \ldots \mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \underline{5} \mathrm{CO}_{2(\mathrm{~g})}+\underline{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& 40.0 \mathrm{LO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{o}_{2}}{22.4 \mathrm{LO}_{2}} \times \frac{5 \mathrm{~mol} \mathrm{co}}{8 \mathrm{moloz}} \times \frac{22.4 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{co}_{2}}=25.0 \mathrm{~L} \mathrm{cos}_{2}
\end{aligned}
$$

How much of the excess reactant will be left over?

$$
\begin{gathered}
24.3 \mathrm{~L} \mathrm{Coz}_{2} \times \frac{1 \mathrm{~mol} \mathrm{co}_{2}}{22.4 \mathrm{LCO}_{2}} \times \frac{8 \mathrm{~mol} \mathrm{o}_{2}}{5 \mathrm{~mol} \mathrm{co}_{2}} \times \frac{22.4 \mathrm{~L}_{\mathrm{O}_{2}}}{1 \mathrm{moloz}}=38.8 \mathrm{~L} \mathrm{O}_{2} \\
40.0 \mathrm{~L}_{\mathrm{O}_{2}}-38.8 \mathrm{~L}_{\mathrm{O}_{2}}=1.2 \mathrm{~L}_{\mathrm{o}_{2}}
\end{gathered}
$$

