Chemistry 11

Organic Chemistry I

Name: Date: Block:

- 1. Carbon Organic Compounds
- 2. Simple Hydrocarbons
- 3. Naming Simple Hydrocarbons

Carbon - Organic Compounds

Lewis Structure for Carbon:

A carbon atom has _____ valence electrons.

Organic Compounds

0

• Organic compounds may also contain

Examples of organic compounds:

1.

2.

3.

4.

5.

6.

Inorganic Carbon Compounds			
•			
•			
*			
*			
*			

Simple Hydrocarbons

- Recall that a carbon has _____ valence electrons.
- Each carbon atom can form ____ covalent bonds.

Sample Problem — Using Structural Formulas to Represent Organic Compounds

Butane is a fuel used in lighters. It has the formula C_4H_{10} and has four carbon atoms attached to each other in a chain with only single bonds. Draw a structural formula for butane.

What to Think about

- The four carbon atoms are bonded to each other in a chain, so draw four carbon atoms attached to one another in a line.
- Each carbon atom can form four covalent bonds.
 The first carbon atom has one bond to the carbon atom beside it. It can therefore bond with three hydrogen atoms.
- The next two carbon atoms have two other carbon atoms already covalently bonded to them. They can only bond with two hydrogen atoms each.
- The last carbon atom is already bonded to one other carbon atom. It can form three bonds with hydrogen. The formula shown on the right is called a structural formulas.
- Condense this structural formula by writing the number of hydrogen atoms bonded to each carbon.
- 6. To condense this formula even more, use a line to represent each carbon bond. Do not show the carbon or hydrogen atoms at all. Notice that the lines will not be attached in a straight line. Organic molecules are not linear. At the end of each line segment is a carbon atom not shown. Hydrogen atoms are also not shown in this formula.

How to Do It

Structural Formula:

Condensed Structural Formula:

Carbon Skeleton Formula:

becomes

Naming Simple Hydrocarbons					
•					

• Chemical Formula:

# of C Atoms	Prefix	Alkane	Formula
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Practice!

1. Write out the condensed structural formula for all 10 straight-chain alkanes.

2. Draw the carbon skeleton formula for all 10 straight-chain alkanes. (You cannot draw methane.)

3.	conde	e, a constituent of gasoline, has the molecular nsed structural formula and carbon skeleton nded in a single chain to each other.		
4.	Arrang	a structural formula, condensed structural fo ge the carbon atoms in a closed ring shape so n atoms.		
5.		would the formula be for a straight chain alkagen atoms?	ane t	that had the following number of carbon or
	a.	6 carbon atoms	f.	102 hydrogen atoms
	b.	12 carbon atoms	g.	54 hydrogen atoms
	C.	14 carbon atoms	h.	84 hydrogen atoms
	d.	29 carbon atoms	i.	16 hydrogen atoms
	e.	98 carbon atoms	j.	4 hydrogen atoms